
BLISS� A Language for Systems Programming

W�A� Wulf� D�B� Russell� A�N� Habermann

Carnegie�Mellon University

A language� BLISS� is described� This language is designed so as to be especially suitable for use in
writing production software systems for a speci�c machine �the PDP���	
 compilers� operating systems�
etc� Prime design goals of the design are the ability to produce highly e�cient object code� to allow
access to all relevant hardware features of the host machine� and to provide a rational means by which
to cope with the evolutionary nature of systems programs� A major feature which contributes to the
realization of these goals is a mechanism permitting the de�nition of the representation of all data
structures in terms of the access algorithm for elements of the structure�

Introduction

In the fall of ����� Carnegie�Mellon University
acquired a pdp��� to support a research project
on computer networks� This research involves
the production of a substantial number of large
systems programs of the type which have usually
been written in assembly language� At an early
stage of this design e�ort it was decided not to
use assembly language� but rather some higher�level
language� This decision immediately led to another
question	which language
 In turn this led to a
consideration of the characteristics� if any� which are
unique to� or at least exaggerated in� the production
and maintenance of systems programs� One product
of these deliberations was a new language� which we
call bliss� Clearly� a language is not the only tool
needed� however� it is the one with which we deal in
this paper�
We refer to bliss as an �implementation lan�

guage�
 although we admit that the term is some�
what ambiguous since� presumably� all computer
languages are used to implement something� To
us the phrase connotes a general purpose� higher�
level language in which the primary emphasis has
been placed upon a speci�c application� namely the
writing of large� production software systems for a

Copyright C������ Association for Computing Machinery�
Inc� Reprinted from the December ���� issue of Communi�

cations of the ACM �Volume ��� Number �	
� Permission to
reprint granted by the Association for ComputingMachinery�

speci�c machine� Special purpose languages� such
as compiler�compilers� do not fall into this category�
nor do we necessarily assume that these languages
need be machine�independent� We stress the word
�implementation
 in our de�nition and have not
used words such as �design
 and �documentation�

We do not necessarily expect that an implemen�
tation language will be an appropriate vehicle for
expressing the initial design of a large system nor
for the exclusive documentation of that system�
Concepts such as machine independence� expressing
the design and implementation in the same notation�
self�documentation� and others� are clearly desirable
goals and are criteria by which we evaluated various
languages�
However� they are not implicit in our de�nition�

There are a few extant examples of languages which
�t our de�nition� epl �a PL�� derivative which
was initially used on multics ��� but which has
been replaced by full PL���� B���� Extended algol
�Burroughs Corporation ����� PL��� ���� and bcpl

����
The various arguments for and against the use

of higher�level languages to write systems software
have been discussed at length� We do not intend to
reproduce them here in detail except to note that the
skeptics argue primarily on two grounds� e�ciency�
and an assertion that the systems programmer must
not allow anything to get between himself and the
machine� The advocates argue on the grounds of
production speed �and cost�� maintainability� re�
design and modi�cation� and understandability and

�

correctness� The report of the NATO Conference
on Software Engineering held in Garmish �Octo�
ber ����� ��� contains several discussions on these
points�
It is our opinion that program e�ciency� except

possibly for a very small number of very small code
segments� is determined by overall program design
and not by locally tricky� �bit�picking
 coding prac�
tices� Moreover� the critical code segments are
frequently located only after the system is opera�
tional� This opinion is borne out by many systems
which have experienced substantial performance im�
provements from redesign or restructuring result�
ing from understanding or insight after the system
has been running for some time �see� for example�
E�E� David�s comments� ��� pp� �������� One of the
paramount design objectives of bliss was to facili�
tate redesign and recoding� Since this redesign is fre�
quently done by someone other than the program�s
original author� there is a corollary objective of
readability� This argues for good documentation	
but also for understandability of the code itself�
Understandability is a function of many things� not
all of which are inherent in the language in which
a program is written	a programmer�s individual
style� for example� Nevertheless� the length of a
program text and the structure imposed upon that
text are important factors and argue strongly for the
use of a higher�level language�
Presuming the decision to use an implementa�

tion language� which one should one choose
 An
argument might be made for choosing one of the
existing languages� say fortran� PL��� or apl�
and possibly extending it in some way� We have
chosen to add to the tongues of Babel by de�ning
yet another new language� and some justi�cation is
required� The only valid rationale for creating a new
language is that the existing ones are inappropriate
to the task� It was our judgement that no existing
languages dealt with all of the proper issues and
hence a new language was necessary� What then are
the special characteristics of systems programs for
which existing languages are inappropriate
 �Later
we shall discuss how these manifest themselves in
bliss�� The two special characteristics most fre�
quently mentioned are e�ciency and access to all
hardware features of the machine� We add several
things to these� the resulting list forms the design
objectives of bliss�

Requirements of Systems Programs

� space�time economy
� access to all relevant hardware features

� object code must not depend upon elaborate
run�time support

Characteristics of Systems Programming Practice

� control over the representation of data structures
� �exible range of control structures �notably in�
cluding recursion� coroutines� and asynchronous
processes�

� modularization of a system into separately com�
pilable submodules

� parameterization� especially conditional compi�
lation

Overall Good Language Design

� encourages program structuring for understand�
ability

� encourages program structuring for debugging
and measurement

� economy of concepts �involution�� generality�
�exibility� etc�

� utility as a design tool
� machine independence

The order in the above list is not accidental� Those
items found early in the list we consider to be
absolute requirements� while those occurring later in
the list may be thought of as criteria by which alter�
native designs are judged once the more demanding
requirements are satis�ed�
Not all of the goals mentioned above are com�

patible in practice� For example� e�ciency� access
to machine features� and machine independence are
con�icting goals� In fact� the design of bliss is
not machine independent� although the underlying
philosophy and much of the speci�c design are� The
machine for which the language was being designed�
the pdp���� was constantly in the minds of the de�
signers� The code to be generated for each proposed
construct� or form of a construct� was considered
before that construct was included in� or excluded
from� the language� Thus the characteristics of the
target machine pervade the language in both overt
and subtle ways� This is not to say that bliss could
not be implemented for another machine� it could�
It does say that bliss is particularly well suited to
implementation on the pdp��� and that it could
probably not be as e�ciently implemented on most
other machines� We think of bliss as a member
�the only one at present� of a class of languages
that are similar in philosophy and that mirror a
similar concern for the important aspects of systems
programming� but where each is tailored to its host
machine�

�

As another example of the incompatibility of
these goals� consider the requirement for minimal
run�time support and the use of the implementation
language as a design tool� In some sense a design
tool should be at a higher level than the object
being designed	that is� the tool should relieve the
designer from concern over whichever details the
designer deems appropriate only for later consider�
ation� Any language relieves its user from concern
over certain details� even assembly language frees
the coder from the need to make speci�c address
assignments� Assembly language is not a good
design tool� however� precisely because the class of
such facilities is small� a higher�level language is
better because the class is larger� There is a point�
however� beyond which broadening the class of de�
tails which are handled automatically introduces
substantial costs in run�time e�ciency and requisite
run�time support� The design of bliss walks a very
�ne line between generality� e�ciency� and minimal
run�time support� In fact� bliss programs require
no run�time support routines�

Description of BLISS

bliss may be characterized as an �algol�PL��

derivative in the sense that it has a similar ex�
pression format and operator hierarchy� a block
structure with lexically and dynamically local vari�
ables� similar conditional and looping constructs�
and �potentially� recursive procedures� As may be
seen from the two simple examples shown below�
the general format of bliss code is quite algol�
like� however� the similarity stops shortly beyond
this glib comparison�

function factorial�n� �
if �n � � then � else �n � factorial��n� ���

function QQ search �K� �
begin register R�Q�A�E�
E � R � �K��n� Q � �K mod �n�
A� �const�
do if �ST ��R� � �K

then return �R
else �R � �R� �A� A� �A� �Q�

until �R � �E
end�

The �rst of these examples is the familar recursive
de�nition of factorial� The second example is
the �quadratic quotient
 hash search described by
J� Bell ����
We now describe the features of bliss in terms of

its major aspects	��� the underlying storage� ���

control� and ��� data structures� �nally� we mention
some other miscellaneous features�

�� Storage
A bliss program operates with and on a number
of storage �segments�
 A storage segment consists
of a �xed and �nite number of �words�
 each of
which is composed of a �xed and �nite number of
�bits
 ��� for the pdp����� Any contiguous set
of bits within a word is called a ��eld�
 A �eld
may be �named
� the value of a name is called
a �pointer
 to that �eld� In particular� an entire
word is a �eld and may be named� In practice a
segment generally contains either program or data�
and if the latter� it is generally integer numbers�
�oating�point numbers� characters� or pointers to
other data� To a bliss program� however� a
�eld merely contains a pattern of bits� Various
operations may be applied to �elds and bit patterns�
such as fetching a bit pattern �value� from a �eld�
storing a bit pattern into a �eld� integer arithmetic�
comparison� Boolean operations� and so on� The
interpretation placed upon a particular bit pattern
and the consequent transformation performed by an
operator is an intrinsic property of that operator and
not of its operands� That is to say� there is no �type

di�erentiation as in algol�
Segments are introduced into a bliss program

by declarations� called �allocation declarations�
 for
example�

global g�
own x� y���� z�
local p��		��
register r�� r
����
function f�a� b� � �a � �b�

Each of these declarations introduces one or more
segments and binds the identi�ers mentioned �e�g� g�
x� y� to the name of the �rst word of the associated
segment� �The function declaration also initializes
the segment named f to the appropriate machine
code��
The segments introduced by these declarations

contain one or more words� where the size may
be speci�ed �as in local p������� defaulted to one
�as in global g��� or defaulted to whatever length
is necessary for initialization �as in the function

declaration�� The identi�ers introduced by a decla�
ration are lexically local to the block in which the
declaration is made �that is� they obey the usual
algol scope rules�� with one exception	namely�
global identi�ers are made available to other� sep�
arately compiled modules� Segments created by

�

own� global� and function declarations are created
only once and are preserved for the duration of the
execution of a program� Segments created by local
and register declarations are created at the time of
block entry and are preserved only for the duration
of the execution of that block� The register seg�
ments di�er from local segments only in that they
are allocated from the machine�s array of �� general
purpose �fast� registers� Reentry of a block before
it is exited �by recursive function calls� for example�
behaves as in algol� that is� local and register

segments are dynamically local to each incarnation
of the block�
It is important to notice from the discussion

above that identi�ers are bound to names by these
declarations� and that the value of a name is a
pointer� Thus the value of an instance of an
identi�er� say x� is not the value of the �eld
named by x� but rather is a pointer to x� This
interpretation requires a �contents of
 operator for
which the symbol ��
 has been chosen� To a
programmer who is used to the context�dependent
interpretation of identi�ers� it may seem that the
notations x and �x for a pointer to a �eld and value
of that �eld� respectively� might better be replaced
by x and x� However� a little comparison will soon
show that the dot notation is to be preferred�
First� ��
 has a unique interpretation as a unary

operator meaning� �take the contents of the �eld
pointed at by x�
 x cannot be interpreted as the
inverse of ��x
� since the dot function does not have
a unique inverse �there may be many locations with
the same value as that of x�� If the occurrence of
x is interpreted as �compute the �eld pointed at
by x and take its contents�
 one could attach to
 x the meaning� �perform the operation described
above� but suppress the extraction of the contents�

But �
 could still not be used as unary operator�
since �x ! y� or even x would be meaningless�
whereas ��x! y� and ��x both make sense�
Second� one of the major objectives of bliss is

to permit the programmer to de�ne arbitrary rep�
resentations of data structures �as will be discussed
later�� In order to accomplish this it is necessary
to not only allow operations on pointers� but also
to allow the value of an arbitrary expression to be
interpreted as a pointer� i�e�� a name� Since the
semantic interpretation of identi�ers is independent
of context� and consequently so is that of all expres�
sions� it is possible to do this in a consistent manner�
A consistent interpretation is much more di�cult in
the case of context�dependent interpretations �since
static context is inadequate in expressions involv�

ing function calls� for example�� The authors feel
strongly that this context�independent interpreta�
tion of identi�ers simpli�es systems programming�
Experience in using the language for nontrivial pro�
gramming tasks supports this point of view�
There are two additional declarations whose ef�

fect is to bind identi�ers to names� but which do
not create segments� examples are�

external s�
bind y
 � y�
� pa � p� �a�

An external declaration binds one or more identi�ers
to the names represented by the same identi�er
declared global in another� separately compiled
module� The bind declaration binds one or more
identi�ers to the value of an expression at block
entry time� At least potentially the value of this
expression may not be calculable until run time	as
in �pa " p! �a
 above� Examples of the use of bind
will be found in subsequent sections�

�� Control
bliss is an �expression language�
 that is� every
executable construct� including those which mani�
fest control� is an expression and computes a value�
There are no statements in the sense of algol
or PL��� Expressions may be concatenated with
semicolons to form compound expressions� where
the value of a compound expression is that of its last
component expression� Thus ��
 may be thought
of as a dyadic operator whose value is simply that
of its right�hand operand� Compound expressions
have a similar appearance and function as a list of
statements in algol� The pair of symbols begin
and end or left and right parentheses may be used to
embrace such a compound expression and convert it
into a simple expression� A block is merely a special
case of this construction which happens to contain
declarations� thus the value of a block is de�ned to
be the value of its constituent compound expression�
The operator ��
 is a dyadic operator which

should be read as �store into�
 More precisely� the
expression ��� � ��
 means� the �uninterpreted�
bit pattern resulting from the evaluation of the
expression �� is to be stored into the �eld named by
the pointer resulting from the evaluation of ��� In
algol the statement x �" x! � causes the value of
x to be incremented by one� Coupling the de�nition
of ��
 given above with the interpretation of
identi�ers and the dot operator� the equivalent bliss
would be x � �x! �� The value of the assignment
operator is de�ned to be identical to that of its right�
hand operand� thus� the value of x � �x ! � is

�

the incremented value of the cell named by x� The
compound expression ��y � x� z � ��y!��
 causes
a pointer to x to be stored into y� then computes the
value of the �eld named by x �accessed indirectly
through y� plus one and stores this value in z� in
this case this value is also that of the compound
expression� The important thing to remember about
the assignment operation� e�g� �� � ��� is that it
assigns a value to the �eld named by ��� not �� itself�
There is the usual complement of arithmetic�

logical� and relational operators� Logical operators
operate on all bits of a �eld� relational operators
yield a value � if the relation is satis�ed� and �
otherwise�
We will describe six forms of explicit control ex�

pressions� conditional� looping� case�select� function
call� coroutine call� and escape� For this discussion it
will be convenient to use the symbols � or e� possibly
subscripted� to represent arbitrary expressions�
The conditional expression is of the form �if ��

then �� else ��
 and is de�ned to evaluate� and have
the value of� �� just in case the rightmost bit of �� is
a � and evaluates� and has the value of� �� otherwise�
The abbreviated form �if �� then ��
 is considered
to be identical to �if �� then �� else �
�
There are six basic forms of looping expressions�

while �� do �
do � while ��
until �� do �
do � until ��
incr hnamei from �� to �� by �� do �
decr hnamei from �� to �� by �� do �

Each form of looping expression implies repeated
execution �possibly zero times� of the expression
denoted � until a speci�c condition is satis�ed�
In the �rst form �while���do� the expression � is
repeated so long as the rightmost bit of �� remains
�� The second form is similar to the �rst except
that � is evaluated before ��� thus guaranteeing at
least one execution of �� The until forms are similar
to the while forms except that the condition is
negated� The last two forms are similar to the
familiar �step���until
 construct of algol� except�
�l� the control variable is local to �� ��� ��� ���
and �� are computed only once �before entry to the
loop�� and ��� the direction of the step is explicitly
indicated �increment or decrement�� Except for
the possibility of an escape expression within � �see
below�� the value of a loop expression is uniformly
taken to be ���
We shall treat somewhat simpli�ed versions of the

case and select expressions here� these forms are�

case e of set ��� �� � � � � � �n�� � �n tes
select e of

nset �� � ��� �� � �� � � � � � ��n � ��n�� tesn

The value of a case expression is �e � that is� the
expression e is evaluated� and this value is used
to select one of the expressions� �i �� � i � n��
to evaluate� The value of �i becomes the value of
the entire case expression� The value of a case

expression is unde�ned if e is not in the range
� � e � n� The select expression is somewhat
similar to the case expression� with the distinction
that the value of e is not restricted to the range
� � e � n� Execution of the select proceeds as
follows� �l� the value of e is computed� ��� the values
of the expressions ��i �� � i � n� are evaluated� ���
for each i such that e " ��� the expression ��i�� is
evaluated� If there is no i such that e " ��i� the
value of the select expression is de�ned to be ���
In the event that one or more values of i exist such
that e " ��i� each of these expressions is evaluated
in ascending order of the values of i� in this case the
�nal value of the select expression is taken to be
that of the last of these expressions to be evaluated�
The particular choice of �� as the value of

loop expressions and select expressions is almost
but not entirely arbitrary� It might have been
preferable to have them return a unique �unde�ned

or �nil
 value� but no such value was available
for the particular machine for which bliss was
implemented� The value �� was chosen principally
because it is marginally cheaper �in code produced�
to generate this value and test the sign of a value
in the pdp���� Also� zero�relative indexing is
common� and a negative value is clearly illegal in
such contexts� Beyond these minor justi�cations
the only important property of this choice is its
uniformity�
It should be noted that the set of control ex�

pressions presented thus far is not minimal� All of
the loop expressions could be constructed from the
�while���do
 form� and case and select expressions
could be constructed from conditional expressions�
for example� The decision to include a fairly rich
collection of control structures in part resulted from
another decision� to be discussed shortly� not to
include the familar go to statement form of control�
This decision suggests that the designers must pay
far more attention to the range of control forms
included� since there is no way for the user to synthe�
size his own control from the more primitive �go to�
control form� In the case of bliss two criteria were

�

applied to determine whether a proposed control
form should be included�

�� Was there a reasonable application for which
the mode of expression without the proposed
construct was awkward and�or obscure

�� Was it possible to compile better code utilizing
the additional information provided by the new
construct than would have been possible other�
wise

All of the control expressions discussed above satisfy
at least one and usually both of these criteria�
The select expression� for example� both produces
more e�cient code and is a more natural� obvious
mode of expression than the equivalent case or
if formulation when the selection criteria involves
noncontiguous values�
A function call expression has the form �� ����

��� � � � � �n�
� This expression causes activation
of the segment named by � as a subprogram with
an initialization of the formal parameters named in
the declaration of the function to the values of the
actual parameters ��� � � � � �n � Only call�by�value �in
the algol sense� parameters are allowed� however�
call�by�reference is implicitly available since names�
pointer values� may be passed� The value of a
function call is that resulting from execution of the
body of the function� Thus� for example� the value
of the following block is ����

begin
function factorial�n� �

if �n � � then � else �n � factorial��n� ���
factorial���
end

Note that a function call need not explicitly name
a function by its associated identi�er� all that is
required is that � evaluate to the name of a segment�
Thus expressions such as the following are valid and
useful�

�case �x of set P�� P
� P� tes���z�

Note in this example that the occurrence of a param�
eter list enclosed in brackets triggers a function call�
An identi�er by itself merely denotes a pointer to the
named segment� thus P�� P�� and P� are the names
of functions �not the result of executing them� and
the value of the case expression is the name of one of
these functions� The value of the entire expression
above is the result of executing one of the functions
P�� P�� or P� with actual parameter �z� Function
calls with no parameters are written �� ��
�

The body of any function may be activated as
a coroutine and�or asynchronous process� An ar�
bitrary number of distinct incarnations of a single
body are allowed� indeed� arbitrarily many incar�
nations of a function body as both coroutines and
subroutines may exist simultaneously� In order to
permit any of several useful styles of coroutine mech�
anism� only two primitive operations are provided
directly in the language�

create � ���� ��� � � � � �n� at �� length �� then ��
exchj ���� ���

More complex coroutine call conventions can easily
be constructed from these primitives� �Note that
any of the expressions represented by ��s above may
evaluate at execution time��
The e�ect of the create expression is to establish

a new� independent context �that is a stack� for
the function named by � with actual parameter
values ��� � � � � �n� The stack is set up beginning
at the word named by �� and is of size �� words
�to provide over�ow protection�� The activation
point for the newly created coroutine is set to the
head of the function named by �� The value of the
create expression is a �process name
 for the new
coroutine� Control then passes on to the expression
following the create	in particular� the expression
�� is not executed at this time and the body of � is
not activated� When two or more such contexts have
been established� control may be passed from the
currently executing one to any other by executing an
�exchange jump�
 exchj� expression� An expression
�exchj���� ���
 will cause control to pass to the
coroutine named by �� �the value of an earlier
create expression�� The value �� becomes the value
of the exchj operation which last caused control
to pass out of the coroutine named by ��� Thus�
e�ectively� �� may be passed as a parameter to the
coroutine being reactivated�
The expression ��� one will note� is not executed

at the time at which a coroutine is created� Instead
this expression is executed only when and if control
passes out of the body of the coroutine by a normal
subroutine�type return �e�g� �falling through the end
of its body
�� The normal minimal action to be
expected of �� is to return the stack space used by
the coroutine and to exchj to some other� active�
coroutine� In such a case� a subroutine�type return
from a coroutine corresponds to the coroutine killing
its own existence�
The coroutine mechanism described above is il�

lustrated by the following skeletal example� �The

�

exit operations in this example are instances of an
�escape expression
 �which is explained in the sub�
sequent material�� In this case� if �when� executed
they will cause control to pass to the end of the
block��

begin
own pa� pb� s���		�� s
��		��
function a �

begin local la� x�
���
x � exchj��pb� la��
���
end�

function b�z� �
begin local lb� y�
���
y � exchj��z� lb��
���
end�

pa � create a�� at s� length �		 then exit�
pb � create b��pa� at s
 length �		 then exit�
exchj��pa� 	��

end

Execution of the main body of this block creates two
coroutine contexts� one for the function a and one
for b� and stores process names for these in pa and
pb� respectively� The function b has one formal
parameter whose value is initialized to �pa� i�e� to
the process name of an incarnation of a� The main
body then causes control to pass� via the exchj� to
the coroutine named by �pa	that is� an incarnation
of a� in this case� The activation point of both
coroutines at this time is at the head of their bodies�
At some point in the execution of a the execution of
�x � exchj��pb� la�
 will cause control to pass to
the coroutine named by �pb� leaving the activation
point of a at the store operation� Similarly� at some
later time the execution of �y � exchj��z� lb�
 will
cause control to return to a �since �z � �pa � a
process name of a� at its activation point and leave
the activation point of b at its store�operation� The
value of the exchj operation in a is de�ned to be
that of the parameter in the exchj operation which
caused control to return to a� hence in this case a
pointer to the local variable lb will be stored in x�
The familiar �go to���label
 form of control has

not been included in bliss� There are two reasons
for this� ��� unrestricted go to�s require consider�
able run�time support �principally due to the pos�
sibility of jumping out of functions and�or blocks��

and ��� the authors feel strongly that the general
go to� because of the implied violation of program
structure� is a major villain in programs which are
di�cult to understand� modify� and debug� There
are �good
 and �bad
 ways to use a go to� and there
are restrictions which could be imposed which elim�
inate the need for run�time support� Consideration
of the nature of �good
 ways� and of the restrictions
necessary to eliminate run�time overhead� led us to
eliminate the go to altogether� and to the inclusion
of a rich collection of conditional� looping� and case�
select expressions� These alone� however� are not
su�ciently general� or convenient� and consequently
the �escape
 expressions were introduced� There are
eight forms of the escape mechanism� one for each
form of control environment�

exitblock � exitcase �

exitcompound � exitselect �

exitloop � exit �

exitset � return �

Each escape expression causes control to exit from
a speci�ed control environment �a block� a loop� or
a conditional expression� for example� and de�nes
a value ��� for that control expression �exit exits
from any form of control expression� return exits
from a function�� Essentially the escape mechanism
provides a highly structured form of forward branch
which is awkward to obtain with the other control
expressions�
Consider a linked list of two word cells� the �rst

of which contains a link �pointer� to the next cell
�the last cell has link " �� and the second of which
contains data� The following expression illustrates
one use of an escape expression� the expression has a
value which is the pointer to the �rst negative data
item� or a value of �� if no such item is found� The
address of the head of the list is contained in a �eld
called head�

�register t� t � head� while �t � ��t� �� 	 do
if ���t� l� � 	 then exitloop �t��

Note that the initialization of �t � head� sets the
value of t to a pointer to head� not the contents of
head�
It is interesting to note that the decision to

remove the go to from bliss and the decision
to make bliss an expression language are closely
related� The presence of the go to presents some
awkward situations in the implementation of an
expression language	for example�

�

go to L� � � � � x � a� b � �L � C � d�� � � �

or

x� a��if b then c else go to L�� � � �

With the go to eliminated from the language
it becomes desirable to implement an expression
rather than a statement oriented language� Part
of the burden carried by the go to in conventional
languages shifts to numeric values which control
conditional� loop� case� or select expressions�

�� Data Structures
One of the outstanding characteristics of systems
programs is their concern with the wide variety of
data structures and schemes for representing these
structures� Observation of what systems program�
mers do reveals that a large fraction of their design
e�ort is spent in constructing representations for
e�ciently encoding the information to be processed�
It is frequently the case that the most di�cult task
in making a modi�cation to an existing program
is that of representing the additional information
required �e�g� the infamous ��nd another bit
 prob�
lem�� Consequently the issue of representation was
one of the central design considerations in bliss�
Two principles were followed in the design of the

data structure facility of bliss�

� the user must be able to specify the accessing

algorithm for elements of a structure�
� the structure de�nition and the algorithms which
operate on the elements of a structure must
be separated in such a way that either can be
modi�ed without a�ecting the other�

The �rst principle is in accordance with the �exibil�
ity and e�ciency the bliss programmer should be
provided with in utilizing the machine features� It
expresses our strong feelings that we cannot	and
should not try to	predict which kind of structures
a system programmer will need� so that a given set
of primitive structures and other statically de�ned
structures is inadequate� The feature of a structure
declaration� on the other hand� in which the user
himself speci�es the way in which elements are
accessed� provides the user with the full �exibility
and e�ciency he needs� This point is illustrated
below by taking as an example the well�known ar�
ray structure� The di�erence with the static array
structure of algol is demonstrated by discussing
several varieties of accessing an array�
In order to achieve a language in terms of which it

is possible to write large systems that may be easily
modi�ed� it is imperative that the speci�cations of
the representation of a data structure be separated
from the speci�cation of algorithms which manipu�
late data in that structure� This principle is severely
violated in assembly languages where� typically� the
code to access an element of a structure� for exam�
ple� simply a contiguous �eld of bits within a word�
is coded �in line
 at the point where the element is
needed� A comparatively trivial change which alters
the size or position of the �eld may require locating
and modifying all references to the �eld� This simple
problem could be solved by following good coding
practice and� perhaps� by the use of macros� not all
changes are of such a trivial nature� however�
The concept of a �pointer
 to a �eld �of bits

within a word� was mentioned earlier� Actually�
in bliss a pointer is a ��tuple consisting of� �l� a
word address� ��� a �eld position� ��� a �eld size�
��� an �index� register name� and ��� an �indirect
address
 bit� These �ve quantities are encoded
in a single word and as such are a manipulatable
item in the language �a prerequisite of algorithmic
representational speci�cation�� For simplicity� we
discuss only the �rst three of these quantities� the
reader is referred to the bliss reference manual ���
for more detail� The word address� wa� �eld of a
pointer designates the physical machine address of
the word� the position� p� and size� s� designate a
�eld within a word in terms of the number of bits to
the right of and within the �eld� The notation used
in bliss to specify a pointer �taking only the simple
wa� p� s case� is �wahp� si
�
Assume that the declaration �own x�����
 has

been made� The identi�er x is bound by this
particular declaration to a pointer to the ���bit �eld
which is the �rst word of this ����word segment�
That is� the word address of the pointer x is that
of the location allocated to the segment� and the
position and size �elds have values of � and ���
respectively� If we denote the address of the segment
by �x� then an occurrence of x in a bliss program
is identical to an occurrence of ��xh�� ��i
� If ���
��� and �� are expressions� then the syntactic form
��� ���� ���
 is by de�nition a pointer whose word
address is the value of �� �modulo ��	� and whose
position and size speci�cations are the values of ��
and �� �modulo ��� respectively� Thus �Xh�� �i
 is
a pointer to a four�bit �eld three bits from the right
end of a word namedX� The word address� position�
and size information are encoded within a pointer in
such a way that adding small integers to a pointer
increments the word address� Thus �X ! �
 is a

�

pointer to the word following X �unless the address
�eld over�ows��
In order to satisfy the objectives set out above

for data structures� it is desirable to extend the
allocation declarations �global� own� local� etc��
described above� However� for exposition we shall
�rst describe the structure mechanism in terms of
the allocation declarations already available� then
describe the extensions when more motivation is
possible�
The de�nition of a class of structures� that is�

of an accessing algorithm to be associated with
certain speci�c data structures� may be made by a
declaration of the form�

structure hnamei	hformal parameter listi
 � �

Particular names may then be associated with a
structure class� that is with an accessing algorithm�
by another declaration

map hnamei hname listi

where a hname listi is a sequence of names separated
by colons�
Consider the following example�

begin
structure ary
�i� j� � ��ary
 � �i � �	 � �j��
own x��		�� y��		�� z��		��
map ary
 x�y�z�
���
x��a� �b�� �y��b� �a��
���

end�

In this example we introduce a very simple struc�
ture� ary�� for two�dimensional ��� � ��� arrays�
declare three segments with names x� y� and z

bound to them� and associate the structure class
ary� with these names� The syntactic forms x���� ���
and y���� ��� are valid within this block and denote
evaluation of the accessing algorithm de�ned by the
ary��structure declaration �with an appropriate
substitution of actual for formal parameters��
Although they are not implemented in this way�

for purposes of exposition one may think of the
structure declaration as de�ning a function with one
more formal parameter than is explicitly mentioned�
For example� the structure declaration in the previ�
ous example�

structure ary
�i� j� � ��ary
 � �i � �	 � �j��

conceptually is identical to a function declaration

function ary
�f	� f�� f
� � ��f	 � �f� � �	 � �f
��

The expressions x��a� �b� and y��b� �a� correspond to
calls on this function� i�e� to ary��x� �a� �b� and
ary��y� �b� �a��
A function declaration such as that shown above

implicitly declares identi�ers and allocates storage
for its formal parameters� These are functionally
equivalent to those declared local �in scope and
extent�� and are initialized to the positionally equiv�
alent actual parameter when the function is invoked�
Consistent with the interpretation of identi�ers� the
value of a formal parameter identi�er� say f�� is a
pointer to the location allocated for the formal �on
this� possibly recursive� invocation�� and �f� denotes
its value�
Since� in a structure declaration� there is an

implicit� unnamed formal parameter� the name of
the structure class itself is used to denote this
�zero�th
 parameter� This convention maintains the
positional correspondence of actuals and formals�
Thus� in the example above� �ary� denotes the value
of the zero�th parameter� that is the name of the
particular segment being referenced� and x��a� �b� is
equivalent to �x ! �a � �� ! �b�� The value of this
expression is a pointer to the designated element of
the segment named by x�
In the following example the structure facility and

bind declaration have been used to e�ciently encode
a matrix product �zi�j "

P

k�� xikykj�� In the inner
block the names xr and yc are bound to pointers
to the base of a speci�ed row of x and column of
y respectively� These identi�ers are then associated
with structure classes which allow one�dimensional
access�

begin
structure ary
�i� j� � ��ary
 � �i � �	 � �j��

row�i� � ��row� �i��
col�j� � ��col� �j � �	��

own x��		�� y��		�� z��		��
map ary
 x�y�z�
���
incr i from 	 to � do

begin bind xr � x��i�	�� zr � z����	��
map row xr�zr�
incr j from 	 to � do
begin
register t� bind yc � y�	� �j�� map col yc�
t � 	�
incr k from 	 to � do

t� �t� �xr��k� � �yc��k��
zr��j�� �t�

end�

�

end�
���

end

Suppose now that one wishes to alter the representa�
tion of the structure ary�� and access to the array is
to be made through a dope vector to de�ne the rela�
tive base of each row� The major change required is
to replace the current structure declaration for ary�
by

own i���	�� map row i��
structure ary
�i� j� � ��ary
 � �i��� i� � �j��

With this representation� the use of a special ac�
cessing algorithm �structure� for accessing columns
becomes

structure col�j� � ��col� �i���j���

As can be seen� these fairly simple changes in the
program completely change its representation of the
data� No changes in the processing algorithm are
required�

�� More on Data Structures
The example above has the disadvantage of using
the size of the array explicitly in the access algo�
rithm� so that separate structure declarations would
be required for arrays of di�erent size� It should
be possible for obvious reasons to parameterize the
dependency of the size of the information onto which
the structure is going to be mapped� The required
�exibility is achieved by observing that until now
it only makes sense to use �dotted formals
 in the
access algorithm� because bliss has a strict value
substitution of parameters� Thus� if we wish �and we
do so wish�� another interpretation can be placed on
the occurrence of �undotted formals
 in the access
algorithm� In particular� we shall use the undotted
formal parameter names to denote the value of
parameters associated with particular instances of
a structure �as distinct from instances of accesses to
that structure��
Using �f
 and �g
 to embrace optional syntax

�i�e� �zero or one instance of
�� the bliss structure
declaration is of the form

structure hnamei	hformal parameter listi

� f���f� ��g�g��

where �� is the accessing algorithm as before� ��
is an expression whose value determines the size
�in words� of an instance of this structure� and
�� is an expression whose value is the name of

a user de�ned dynamic allocation function� Any
of the expressions ��� ��� or �� �but especially ��
and ��� may involve undotted formals and thus be
instance speci�c� Consider the following example�
which also illustrates the extension to the allocation
declarations�

begin
structure ary
�i� j� � �i � j���ary
 � �i � j � �j��
own ary
 x�y�z��	� �	��
���

end�

This is essentially the same example as has already
been presented of three� two�dimensional� ����� ar�
rays� However� the information previously contained
in a map declaration has now been included in the
allocation declaration� More importantly� note that
undotted formal names� which correspond to the
�instance actuals� �����
 are used to compute the
size of the instances	as well as in the accessing
algorithm itself� �As in algol declarations� the
instance�actuals distribute over the names to their
left�� Thus the single structure declaration� ary��
may be used for other instances of similarly struc�
tured segments which happen to be of a size other
than ��� ���
The form of allocation and structure declarations

illustrated previously are instances of the extended
syntax in which the obvious defaults are chosen�
Dynamic allocation� of an admittedly simple

kind� is illustrated by the following example�

begin
own space��				�� own spaceptr� external error�
function locspacemgr�tog� numb� base� �
if �tog
then
begin
if �spaceptr � �spaceptr��numb� � �				 then

return error���
space� �spaceptr � �numb�
end

else �if �space� �spaceptr� � �base then
spaceptr � �base� space��

structure lary�i� j� �
�i � j� locspacemgr���lary � �i � j � �j��

local lary x��n� �m� ��� y��� ���
���

end

The local allocation declaration in this example�
local lary x � � �� contains expressions which must
be evaluated at run�time as instance�actuals� hence
dynamic allocation is required� Note that the

��

structure declaration for lary contains the name of
the function locspacemgr in the position denoted
�� in the extended structure declaration syntax�
In fact the value of �� is required to be that of
a function with three formal parameters� say pl�
p�� and p�� This function is automatically called
�possibly several times� at entry and exit from a
block containing an allocation declaration which
speci�es a structure declaration which mentions it�
The interpretation of the parameters is�

p� " � The function is to allocate a segment of
size p� �words�� and return a pointer to this segment�
p� will be the value of the size expression in the
structure declaration� p� has no meaning�

p� " � The function is to deallocate a segment
of p� words whose beginning is pointed to by p� �p�
is the value returned by a previous call with p� " ���
The value of the function in this case is immaterial�
Thus� in the example instances of structures of

type lary are allocated from the segment named
space� Examination of the function locspacemgr

reveals that it allocates on a last�in��rst�out basis�
and hence this particular allocation function is only
suitable for local �stack discipline� variables� It
should also be noted that the example above is
similar to the following block� which uses only the
simpler declarations of the previous section� �Note
that the example is not completely equivalent due
to possible identi�er con�icts��

begin
own space��				�� own spaceptr�
function locspacemgr�tog� numb� base� �

� same as above �
bind i� � �n� j� � �m� ��
structure lary��i� j� � ��lary� � �i � j� � �j��
bind i
 � �� j
 � ��
structure lary
�i� j� � ��lary
 � �i � j
 � �j��
bind x � locspacemgr��� i� � j�� 	�� map lary� x�
bind y � locspacemgr��� i
 � j
� 	�� map lary
 y�
���
locspacemgr�	� i� � j�� x��
locspacemgr�	� i
 � j
� y��

end

This example illustrates that the extended decla�
rations introduce no additional power� however� the
extensions do permit considerable simpli�cation and
clarity�
The requirement that the programmer provide

his own dynamic allocation function was introduced
principally to avoid prerequisite run�time support�
However� the e�ect is that the user may de�ne
allocation policies particularly appropriate to his

own application� Indeed� one might expect di�erent
allocation policies to be associated with di�erent
structures� or even di�erent instances of the same
structure� in a single program�

Conclusions

We have attempted to present above the main fea�
tures of bliss� a language we feel especially suited
to that application area usually called �systems
programming�
 At least one possible interpretation
of this description is as an indirect de�nition of
the system programming �problem area�
 In the
simplest case� this manifests itself in our break with
the traditional interpretation of identi�ers in higher�
level languages as the consequent demand on the
programmer to be consciously aware of the distinc�
tion between name and value� Similarly� the struc�
ture mechanism may be interpreted as a statement
of our judgement as to the extreme importance of
the representation� modi�cation� allocation issues in
systems programming	and hence that these issues
must be explicitly at the programmer�s attention
and control� The decision to exclude the go to state�
ment is similarly a consequence of our judgement
as to the importance of writing highly structured
programs so that they may be read� understood� and
modi�ed�
Considerable experience has been gained in the

use of bliss for writing systems� The bliss compiler
itself� an apl system� a watfor�like fast fortran
compiler� simula�like event based simulation sys�
tem� chess playing programs� input�output routines�
debugging aids� parts of an operating system� and
so on� have been written in bliss� This represents
on the order of ������� lines of code� and forms a
reasonable base for forming some conclusions about
the language� By such measures as readability and
modi�ability� lines of �debugged� code produced per
programmer per day� quality of code produced by
the compiler� and user reaction� the language has
been a success�
Of more interest� perhaps� are the things which

we have learned which will cause us to extend the
language or do things di�erently if we were to do
them over again� We mention three� one of which is
currently being implemented�
�� The implementation presumes a stack which

is used for parameters to functions� return links�
and local variables� The user does not have direct
control over the implicit structure� Since the im�
plementation is quite e�cient� there is little reason
for the user to override it so long as his entire

��

system is written in bliss� However� if one wishes
to use bliss to rewrite parts of an existing system
�for example� we are rewriting parts of the pdp�

�� operating system�� one �nds that con�icts in
parameter passing conventions� register conventions�
etc�� arise�
A partial solution to these problems is imple�

mented in the current compiler in that the user
may control the compiler�s register allocation pol�
icy� Another partial solution �not yet implemented�
would permit a structure to be associated with a
function to specify how parameters are accessed�
The most di�cult aspect of the problem is to devise
a means by which the user may specify the schema
for generation of prologue and epilogue code�
�� The �escape
 mechanism is essential in the

context of a �go to�less
 language� It is unfortunate
that we have eight separate operations �exitloop�
exitblock� etc��� all of which perform essentially
the same function� Our mistake was in assuming
that there is no need for a label once the go to

is removed� It would have been better to permit
a control environment �a block� a loop� or what�
ever� to be labeled� and to use a single operation�
say �leave hlabeli �
� to cover all of these cases�
A simple extension to this notion� �leave hfunction
namei �
� could cause an exit from several �nested�
calls�
�� An assumption made by advocates of imple�

mentation languages� including the authors� is that
systems written in a higher�level language will be
ultimately more e�cient than those produced in
assembly language� The reasoning behind this as�
sumption is simply that the cost of redesigning and
recoding �critical
 portions of a system is smaller
when it is written in a higher�level language than
when it is written in assembly code� and hence it is
more practical to polish the �nal product� The cor�
rectness of this assumption depends upon knowing
which portions of the system are the �critical
 ones�
Experience indicates that our intuition about such
things is poor�
It might be argued that programmers should

build mechanisms into their system to measure its
e�ciency	indeed the same argument may be made
for built�in debugging tools� In practice� however�
given the decision of how to expend today�s e�ort�
a programmer will usually opt for pushing the main
line of the project rather than building these support
tools� On the other hand� he will use such tools
if they already exist� One such tool installed in

the bliss compiler will� under control of a compile
time toggle� cause a user�de�ned function to be
called on each entry �and exit� from a control
environment �block� conditional� loop� function�
etc��� Parameters to this function specify the
�source� line number� type of control environment�
etc� The user may� of course� do whatever he pleases
in this function� however� standard functions have
been written which count the frequency of execution
of the various expressions and accumulate the time
spent in these expressions� Very simple analysis of
the data collected by these routines can so helpful
in determining when further e�ort will be fruitful�

Acknowledgments� We would like to express our
deep gratitude to Messrs� Geschke� Wile� and Ap�
person �graduate students at Carnegie�Mellon Uni�
versity�� each of whom has made valuable contribu�
tions to both the design and implementation of the
language�

References

�� epl reference manual� Project mac� April �����

�� Burroughs B���� Extended algol reference
manual� Burroughs Corp�� Detroit� Mich�

�� Wirth� N� �PL����� A programming language
for the ��� computers�
 J� ACM ��� � �Jan�
������ ������

�� Richards� M� �bcpl� A tool for compiler writing
and system programming�
 Proc� afips ����
sjcc� Vol� ��� afips Press� Montvale� N�J��
pp� ��������

�� Naur� P�� and Randell� B� �Eds�� �Software
engineering�
 Scienti�c A�airs Div�� nato�
Brussels� Belgium �Conference held in Jan� ����
in Garmish��

�� bliss reference manual� Computer Science
Dept� Rep�� Carnegie�Mellon University� Pitts�
burgh� Pa�� Jan� ��� ���O�

�� pdp��� reference handbook� Digital Equipment
Corporation� Maynard� MA� ���O�

�� Lang� Charles A� �SAL	Systems Assembly
Language�
 Proc� afips ���� sjcc� Vol� ���
afips Press� Montvale� N�J�� pp� ��������

�� Bell� J� �The quadratic quotient method� A hash
code eliminating secondary clustering�
 Comm�

ACM ��� � �Feb� ������ pp� ��������

��

