
Introduction to BLISS

Session LT097
Friday, 11 June 1993

11:00 - 12:00

Matthew Madison
TGV, Incorporated

Santa Cruz, CA 95060
madison@tgv.com

Copyright © 1993, MadGoat Software LT097/ 1

Introduction to BLISS

Systems Implementation Language

• Originally developed at CMU for PDP-10’s

• Designed for building O/S software

• Native implementations for TOPS, VAX systems

• Cross-compilers for PDP-11, AXP systems

This session will concentrate on BLISS-32 (the
VAX implementation), BLISS-32E (the 32-bit AXP
implementation), and BLISS-64 (the 64-bit AXP
implementation).

Copyright © 1993, MadGoat Software LT097/ 2

Introduction to BLISS

‘‘Mid-Level’’ Language

Low-level features

• No built-in I/O statements

• Direct access to instruction set and registers

• Control over psects

• Control over subroutine linkage

• Macro facility

High-level features

• Modular, block-structured

• Common 3GL control constructs

• Macro facility

Copyright © 1993, MadGoat Software LT097/ 3

Introduction to BLISS

Data

• No data ‘‘types’’

• All calculations performed on fullwords

• largest natural storage unit

• 32-bit longword on VAX systems

• 16-bit word in PDP-11 systems

• Data segments can be any number of address-
able units in size

• Bit field references supported

• Structures supported

Copyright © 1993, MadGoat Software LT097/ 4

Introduction to BLISS

Fetch Operator

In BLISS, a variable name always represents the
address of a data segment. To obtain the value
stored at that address, you must use the fetch
operator.

In:

B + 1

one is added to data segment B’s address.

In:

.B + 1

the value of B is fetched and one is added.

Copyright © 1993, MadGoat Software LT097/ 5

Introduction to BLISS

Field References

Field references extract bit fields from data seg-
ments. Format:

.X<start-bit,bit-count,sign-extend>

Sign-extend field is either 0 (unsigned) or 1 (signed).

Example:

.X<0,8,0>

extracts the low-order byte (8 bits) from X.

Copyright © 1993, MadGoat Software LT097/ 6

Introduction to BLISS

An ‘‘Expression Language’’

All BLISS executable constructs are expressions,
even loops and blocks.

For example, in:

.A + (B = .C + 1))

the value of the assignment expression (which is .C
+ 1) is added to the value stored at A.

The semicolon (;) is used not only to separate
expressions but also to discard an expression’s
value. In

B = .C + 1;

the value of the assignment expression is not used.

Copyright © 1993, MadGoat Software LT097/ 7

Introduction to BLISS

Blocks

Blocks are used to form a single program unit out
of several statements. They can return values, just
like other expressions. Example:

LOVAL =
BEGIN
LOCAL TEMP;
TEMP = .ARRAY [0];
INCR I FROM 1 TO 9 DO
IF .TEMP GTR .ARRAY [.I] THEN
TEMP = .ARRAY [.I];

.TEMP
END

Copyright © 1993, MadGoat Software LT097/ 8

Introduction to BLISS

Declarations

All names must be declared!

LOCAL
STATUS;

declares STATUS as a local automatic variable, one
fullword in size.

OWN
ARRAY : VECTOR [10,BYTE]
INITIAL (REP 10 OF (0));

declares ARRAY as a static array of 10 bytes, all
initialized to zero.

Other declarations

• Routines

• Processor-specific functions

• Macros

• Literals

Copyright © 1993, MadGoat Software LT097/ 9

Introduction to BLISS

Literals

Literals (constants) can be declared and named:

LITERAL
BUF_SIZE = 1024;

EXTERNAL LITERAL
CLI$_PRESENT;

External literals let you reference globalvalues, like
condition values.

Copyright © 1993, MadGoat Software LT097/ 10

Introduction to BLISS

Structures

BLISS pre-declares common structures:

• VECTOR [n, au]

• BLOCK [bsize, au]

• BLOCKVECTOR [n, bsize, au]

• BITVECTOR [n]

‘‘au’’ is allocation unit (LONG, BYTE, etc.)

BLOCK references are similar to field references:

LOCAL
STRDSC : BLOCK [8,BYTE];

STRDSC [0,0,16,0] = .STRING_LEN;
STRDSC [2,0,8,0] = 14;
STRDSC [3,0,8,0] = 1;
STRDSC [4,0,32,0] = .STRING_ADDR;

Copyright © 1993, MadGoat Software LT097/ 11

Introduction to BLISS

Field Declarations

Field declarations can be used to simplify BLOCK
references:

FIELD DSC_FIELDS =
SET

DSC_W_LENGTH = [0,0,16,0],
DSC_B_DTYPE = [2,0,8,0],
DSC_B_CLASS = [3,0,8,0],
DSC_A_POINTER = [4,0,32,0]

TES;

LOCAL
STRDSC : BLOCK [8,BYTE]

FIELD (DSC_FIELDS);

STRDSC [DSC_W_LENGTH] = .STRING_LEN;
...

Macros can also be used for this.

Copyright © 1993, MadGoat Software LT097/ 12

Introduction to BLISS

STRUCTURE Declarations

You can also define your own structures, defining
the allocation and access algorithm for it:

STRUCTURE
FTN_ARRAY [ROW, COL; ROWS, COLS] =
[ROWS*COLS*4]
(FTN_ARRAY+((COL-1)*ROWS+(ROW-1)*4);

Defines an array structure, 1-based (BLISS prede-
clared vectors are 0-based), accessed like FORTRAN
arrays in column-major rather than row-major order.

Copyright © 1993, MadGoat Software LT097/ 13

Introduction to BLISS

Operators

Besides the fetch operator, BLISS provides these
operators:

• arithmetic: +, -, * /, MOD

• bit shift: ^

• comparison: EQL, NEQ, GTR, LSS, LEQ, GEQ

• logical: AND, OR, XOR, NOT

Only integer arithmetic is supported

Copyright © 1993, MadGoat Software LT097/ 14

Introduction to BLISS

Character-handling

BLISS provides a large collection of character-
handling functions, only some of which are:

• CH$MOVE (n, source, dest)

• CH$EQL (n1, ptr1, n2, ptr2) (also NEQ, GTR,...)

• CH$FILL (fill, n, ptr)

• CH$COPY (srcn1, src1, srcn2, src2, ..., fill,
destn, dest)

• CH$FIND_CH (n, ptr, char)

Note that CH$MOVE and CH$COPY usually translate
into VAX MOVC3 and MOVC5 instructions.

Copyright © 1993, MadGoat Software LT097/ 15

Introduction to BLISS

Control Expressions

• Conditional (IF-THEN-ELSE)

• CASE, SELECT, and SELECTONE

• Loops: WHILE, UNTIL

• Iterative loops: INCR, DECR

• Other: LEAVE, EXITLOOP

Note: no GOTO

Copyright © 1993, MadGoat Software LT097/ 16

Introduction to BLISS

Routines

All routines must be declared before they are used:

ROUTINE SUB1 (PARAM1, PARAM2) =
BEGIN
...

END;

• Ordinary routines are visible only to other
blocks within a module. GLOBAL routines are
visible program-wide.

• EXTERNAL ROUTINE can be used to declare
routines located in other modules.

• FORWARD ROUTINE can be used to pre-declare
routine names that will be declared later in the
module.

Copyright © 1993, MadGoat Software LT097/ 17

Introduction to BLISS

Addressing Modes

BLISS gives you control over the addressing mode
used to access data segments. Typical are:

• WORD_RELATIVE is the default for BLISS-32.
Uses base + word displacement addressing.

• LONG_RELATIVE uses base + longword dis-
placement addressing.

• GENERAL is equivalent to MACRO’s G^.

You can specify which mode should be used by
default for a module in the MODULE declaration.
You can override the default on any declaration.

Copyright © 1993, MadGoat Software LT097/ 18

Introduction to BLISS

Linkage

BLISS-32 uses the VAX calling standard’s CALL-type
linkage by default. You can also declare JSB-type
linkages, which are handy when you’re calling VMS
executive routines from inner-mode code:

LINKAGE
IOCRTN = JSB (REGISTER=1, REGISTER=2,

REGISTER=3; REGISTER=1);

EXTERNAL ROUTINE
IOC$SEARCHDEV : IOCRTN

ADDRESSING_MODE (GENERAL);

This declares IOC$SEARCHDEV as a routine with
JSB-type linkage that uses registers R1, R2, and R3
as input and register R1 as output.

Copyright © 1993, MadGoat Software LT097/ 19

Introduction to BLISS

Including External Definitions

There are two mechanisms:

• REQUIRE ’file-spec’;

• LIBRARY ’file-spec’;

REQUIRE is for including straight source text.
Libraries are pre-compiled files that are much
faster loading but have restrictions on the kinds
of declarations they can include.

SYS$LIBRARY:STARLET.REQ is the REQUIRE file
that contains the VMS system service definitions,
constants, etc. It is shipped with VMS.

Copyright © 1993, MadGoat Software LT097/ 20

Example

Macro Facility

BLISS provides an extensive lexical processing
facility, with four types of macros (ordinary, key-
word, conditional, and interative) and several lexical
functions.

Simple conditional processing:

%IF DEBUG %THEN
LIB$PUT_OUTPUT (%ASCID’in routine X’);

%FI

Simple macro example:

MACRO
DBGPRT (STRING) =
%IF DEBUG %THEN
LIB$PUT_OUTPUT (%ASCID STRING)

%FI
%;

...
DBGPRT (’in routine X’);

Copyright © 1993, MadGoat Software LT097/ 21

Example

Example Module

This code gets the DECwindows display device for
another process by translating the logical name
DECW$DISPLAY in the process’s job logical name
table.

%TITLE ’DECW_DISPLAY’
MODULE DECW_DISPLAY (IDENT=’V1.0-2’) =
BEGIN
!+
! Copyright © 1993, Matthew D. Madison.
! All Rights Reserved.
!-

LIBRARY ’SYS$LIBRARY:LIB’;

LINKAGE
R0JSB = JSB (REGISTER=0) :

PRESERVE(1,2,3,4,5)
NOTUSED(6,7,8,9,10,11);

FORWARD ROUTINE
DECW_DISPLAY,
GET_JIB;

%IF %BLISS(BLISS32E) %THEN
MACRO

EXE$EPID_TO_PCB = EXE$CVT_EPID_TO_PCB%;
%FI

EXTERNAL ROUTINE
EXE$EPID_TO_PCB : R0JSB

ADDRESSING_MODE (GENERAL),
LIB$SYS_FAO : ADDRESSING_MODE (GENERAL),
STR$COPY_R : ADDRESSING_MODE (GENERAL),
STR$FREE1_DX : ADDRESSING_MODE (GENERAL);

Copyright © 1993, MadGoat Software LT097/ 22

Example

%SBTTL ’DECW_DISPLAY’
GLOBAL ROUTINE DECW_DISPLAY (PID, DISP_A, ACMODE) =
BEGIN

BIND
DISP = .DISP_A : BLOCK [,BYTE];

LOCAL
JIB : VOLATILE,
TABNAM : BLOCK [DSC$K_S_BLN,BYTE],
DISPLEN : VOLATILE WORD,
DISPBUF : VOLATILE VECTOR [255,BYTE],
LNMLST : $ITMLST_DECL (ITEMS=1),
ARGLST : VECTOR [3],
STATUS;

ARGLST [0] = 2;
ARGLST [1] = .PID;
ARGLST [2] = JIB;

STATUS = $CMKRNL (ROUTIN=GET_JIB, ARGLST=ARGLST);
IF NOT .STATUS THEN RETURN .STATUS;

$INIT_DYNDESC (TABNAM);
LIB$SYS_FAO (%ASCID’LNM$JOB_!XL’, 0, TABNAM, .JIB);

$ITMLST_INIT (ITMLST=LNMLST,
(ITMCOD=LNM$_STRING, BUFSIZ=%ALLOCATION (DISPBUF),

BUFADR=DISPBUF, RETLEN=DISPLEN));

STATUS = $TRNLNM (TABNAM=TABNAM,
LOGNAM=%ASCID’DECW$DISPLAY’,
ACMODE=ACMODE,
ITMLST=LNMLST);

STR$FREE1_DX (TABNAM);

IF .DISPBUF [0] EQL %C’_’ THEN
DISPLEN = .DISPLEN-1;

IF .STATUS THEN
STR$COPY_R (DISP, DISPLEN,
(IF .DISPBUF [0] EQL %C’_’ THEN

DISPBUF [1] ELSE DISPBUF));

.STATUS

END; ! DECW_DISPLAY

Copyright © 1993, MadGoat Software LT097/ 23

Example

%SBTTL ’GET_JIB’
ROUTINE GET_JIB (PID, JIB_A) =
BEGIN

LOCAL
PCB : REF BLOCK [,BYTE];

.JIB_A = 0;
PCB = EXE$EPID_TO_PCB (.PID);
IF .PCB NEQA 0 THEN
BEGIN

.JIB_A = .PCB [PCB$L_JIB];
RETURN SS$_NORMAL;

END;

SS$_NONEXPR

END; ! GET_JIB

END
ELUDOM

Copyright © 1993, MadGoat Software LT097/ 24

