
SSH for OpenVMS Administration
and User’s Guide

June 2002

This manual provides the system manager with the procedures for installing, managing,
and using the SSH for OpenVMS family of software products.

Revision/Update: This is a new manual.

Operating System/Version: OpenVMS VAX V6.2, 7.0, 7.1, 7.2, 7.3;
OpenVMS Alpha V6.2, 7.0, 7.1, 7.2-1, 7.2-2, 7.3

 UCX Version: V4.2 and later

 TCP/IP Services Version: V5.0 and later

Software Version: 1.0

Process Software
Framingham, Massachusetts
USA

ved.
t the

wing

thout

ry
 forms
e

ed to

T,
ithout
yright
used in

"

 are

wing

The material in this document is for informational purposes only and is subject to change without notice. It
should not be construed as a commitment by Process Software. Process Software assumes no responsibility for
any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

The following third-party software may be included with your product and will be subject to the software license
agreement.

RES_RANDOM.C. Copyright © 1997 by Niels Provos <provos@physnet.uni-hamburg.de> All rights reser
Redistribution and use in source and binary forms, with or without modification, are permitted provided tha
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the follo
disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Niels Provos.
4. The name of the author may not be used to endorse or promote products derived from this software wi
specific prior written permission.

Copyright © 1990 by John Robert LoVerso. All rights reserved. Redistribution and use in source and bina
forms are permitted provided that the above copyright notice and this paragraph are duplicated in all such
and that any documentation, advertising materials, and other materials related to such distribution and us
acknowledge that the software was developed by John Robert LoVerso.

Kerberos. Copyright © 1989, DES.C and PCBC_ENCRYPT.C Copyright © 1985, 1986, 1987, 1988 by
Massachusetts Institute of Technology. Export of this software from the United States of America is assum
require a specific license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting. WITHIN THAT CONSTRAIN
permission to use, copy, modify, and distribute this software and its documentation for any purpose and w
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that cop
notice and this permission notice appear in supporting documentation, and that the name of M.I.T. not be
advertising or publicity pertaining to distribution of the software without specific, written prior permission.
M.I.T. makes no representations about the suitability of this software for any purpose. It is provided "as is
without express or implied warranty.

ERRWARN.C. Copyright © 1995 by RadioMail Corporation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions
met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the follo
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of RadioMail Corporation, the Internet Software Consortium nor the names of its
contributors may be used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED BY RADIOMAIL CORPORATION, THE INTERNET
SOFTWARE CONSORTIUM AND CONTRIBUTORS ``AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL RADIOMAIL CORPORATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

t the
f the

, Inc.,
“Data
ncord

 reflect

re. Any
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software was written for RadioMail Corporation by Ted Lemon
under a contract with Vixie Enterprises. Further modifications have been made for the Internet Software
Consortium under a contract with Vixie Laboratories.

ASCII_ADDR.C Copyright © 1994 Bell Communications Research, Inc. (Bellcore)

DEBUG.C Copyright © 1998 by Lou Bergandi. All Rights Reserved.

RANNY.C Copyright © 1988 by Rayan S. Zachariassen. All Rights Reserved.

MD5.C Copyright © 1990 by RSA Data Security, Inc. All Rights Reserved.

Portions Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 by SRI International

Portions Copyright © 1993 by Compaq Computer Corporation.
Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, provided that the above copyright notice and this permission notice appear in all copies, and tha
name of Compaq Computer Corporation not be used in advertising or publicity pertaining to distribution o
document or software without specific, written prior permission. THE SOFTWARE IS PROVIDED "AS IS"
AND COMPAQ COMPUTER CORP. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL COMPAQ COMPUTER CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Secure Shell (SSH). Copyright © 2000. This License agreement, including the Exhibits (“Agreement”),
effective as of the latter date of execution (“Effective Date”), is hereby made by and between Data Fellows
a California corporation, having principal offices at 675 N. First Street, 8th floor, San Jose, CA 95112170 (
Fellows”) and Process Software, Inc., a Massachusetts corporation, having a place of business at 959 Co
Street, Framingham, MA 01701 (“OEM”).

All other trademarks, service marks, registered trademarks, or registered service marks mentioned in this
document are the property of their respective holders.

Copyright ©1997, 1998, 1999, 2000 Process Software Corporation. All rights reserved. Printed in USA.

Copyright ©2002 Process Software. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this documentation
any that actually exist, it is not intentional and should not to be considered an endorsement, approval, or
recommendation of the actual site, or any products or services located at any such site by Process Softwa
resemblance or duplication is strictly coincidental.

 Contents

Preface
Introducing This Guide... ix

What You Need to Know Beforehand .. ix

How This Guide Is Organized .. ix

Online Help.. x

Accessing the SSH for OpenVMS Public Mailing List... x

Obtaining Customer Support .. xi

License Information.. xi

Maintenance Services ... xi

Reader’s Comments Page...xii

Documentation Set...xii

Conventions Used ...xiii

Chapter 1 Before You Begin
Introduction...1-1

Steps to Get SSH Up and Running ...1-1

Prepare for Installation ...1-2
Hardware Requirements ..1-2
Software Requirements..1-2
Disk Space and Global Pages ..1-2

General Requirements ..1-3
Where to Install SSH for OpenVMS ...1-3

Release Notes and Online Documentation ...1-3

Chapter 2 Installing SSH for OpenVMS
Introduction...2-1

Load the Software...2-1

Start VMSINSTAL ...2-2

Sample Installation ...2-3

Installing SSH for OpenVMS on a Common VMScluster System Disk..2-5

Installing SSH for OpenVMS on Mixed Platform Clusters ...2-6
v

Contents
Chapter 3 Configuring SSH for OpenVMS
Introduction .. 3-1

The SSH Configuration Utility... 3-1

Chapter 4 Configuring the Secure Shell (SSH) V1 Server
SSH1 and SSH2 Differences .. 4-1

Restrictions: ... 4-1
Understanding the Secure Shell Server ... 4-2
Servers and Clients .. 4-2
Security.. 4-2
Options .. 4-3
Configuration File ... 4-3

Starting the SSH Server for the First Time... 4-15
Changing SSH Configuration File After Enabling SSH ... 4-16
Connection and Login Process .. 4-17
AUTHORIZED_KEYS File Format ... 4-17

RSA Key File Examples .. 4-21
SSH_KNOWN_HOSTS File Format .. 4-21

Example ... 4-22
FILES ... 4-23

SSH Logicals ... 4-26
SSH daemon Files ... 4-28

Chapter 5 Configuring the Secure Shell (SSH) V2 Server
SSH1 and SSH2 Differences .. 5-1

Restrictions: ... 5-1
Understanding the SSH for OpenVMS SSH Server.. 5-2
Servers and Clients .. 5-2
Break-In and Intrusion Detection .. 5-3

Configuring SSHD Master ... 5-5
SSH2 Configuration File ... 5-5

Starting the SSH Server for the First Time... 5-11
Changing SSH2 Configuration File After Enabling SSH2 ... 5-13
Connection and Login Process .. 5-13
SSH Files ... 5-13

SSH2 AUTHORIZATION File Format .. 5-17
SSH2 Logicals ... 5-17
SSH daemon Files ... 5-19
vi

Chapter 6 Accessing Remote Systems with the Secure Shell (SSH) Utilities
SSH Protocol Support...6-1

Secure Shell Client (remote login program) ...6-2

Initial Server System Authentication..6-2
Hostbased Authentication ..6-2
Publickey Authentication ...6-3
Password authentication ...6-4

Break-in and Intrusion Detection...6-5
Session Termination...6-5
X11 Forwarding ...6-6

Configuring the SSH Client..6-6

Notes Regarding SSH2_CONFIG ..6-10

SSH Client/Server Authentication Configuration Examples..6-11
 Hostbased Authentication Example..6-11
Publickey Authentication Example ...6-13

SSH1 Example ...6-14
Copying SSH2 Key Files ...6-16

Port Forwarding ..6-16
Other Files..6-20

SSHKEYGEN...6-24

SSHAgent (authentication agent) ...6-27
DESCRIPTION..6-27

FILES ...6-28

SSHADD ..6-28
DESCRIPTION..6-28

OPTIONS ...6-28
FILES ...6-29

Chapter 7 Secure File Transfer
SCP-SERVER1...7-2

SCP2 ...7-2
Usage ..7-2
Qualifiers ..7-3

File Specifications ..7-4

FTP over SSH ...7-8
vii

Contents
Chapter 8 Monitoring and Controlling SSH
Controlling SSH Server Functions ... 8-1

The SSHCTRL Utility.. 8-1

Starting the SSHD Master Process ... 8-2

Shutting down the SSHD Master Process .. 8-2

Restarting the SSHD Master Process ... 8-3

Changing the Server Debug Level ... 8-3

Displaying SSH Server Utilization... 8-3

Index

Reader’s Comments
viii

Preface

Introducing This Guide
This guide describes the SSH for OpenVMS software. It covers the following topics: software
installation, server and client configuration, server startup and shutdown, using the various SSH
clients, and server monitoring and control.

What You Need to Know Beforehand
Before using SSH for OpenVMS, you should be familiar with:

• Computer networks in general

• OpenVMS operating system and file system

• HP’s OpenVMS TCP/IP software

How This Guide Is Organized
This guide has the following contents:

• Chapter 1, Before You Begin, explains what you need to prepare for an installation.

• Chapter 2, Installing SSH for OpenVMS, provides a step-by-step procedure for executing the
software installation.

• Chapter 3, Configuring SSH for OpenVMS, explains how to configure SSH for OpenVMS.

• Chapter 4, Configuring the Secure Shell (SSH) V1 Server, describes how to configure and
maintain the SSH for OpenVMS SSH V1 server.

• Chapter 5, Configuring the Secure Shell (SSH) V2 Server, describes how to configure and
maintain the SSH for OpenVMS SSH V2 server.

• Chapter 6, Accessing Remote Systems with the Secure Shell (SSH) Utilities, explains how to
configure and maintain the SSH for OpenVMS Secure Shell (SSH) client.
ix

Preface

nd its

h
 the
• Chapter 7, Secure File Transfer, describes using SCP and FTP over SSH for transferring files in
a secure manner.

• Chapter 8, Monitoring and Controlling SSH, describes the utilities used for monitoring and
controlling the SSH server environment.

Online Help
You can use help at the DCL prompt to find the following:

• Topical help — Access SSH help topics only as follows:

$ HELP SSH [topic]

The topic entry is optional. You can also enter topics and subtopics at the following prompt a
subprompts:

SSH Subtopic?

Accessing the SSH for OpenVMS Public Mailing List
Process Software maintains two public mailing lists for SSH for OpenVMS customers:

• Info-SSH@process.com
• SSH-Announce@process.com

The Info-SSH@process.com mailing list is a forum for discussion among SSH for OpenVMS
system managers and programmers. Questions and problems regarding SSH for OpenVMS can be
posted for a response by any of the subscribers. To subscribe to Info-SSH, send a mail message
with the word “SUBSCRIBE” in the body to Info-SSH-request@process.com.

You can retrieve the Info-SSH archives by anonymous FTP to ftp.multinet.process.com. The
archives are located in the directory [.MAIL_ARCHIVES.INFO-SSH].

You can also find the Info-SSH archives on the SSH for OpenVMS CD in the [INFO-SSH]
directory.

The SSH-Announce@process.com mailing list is a one-way communication (from Process
Software to you) used for the posting of announcements relating to SSH for OpenVMS (patc
releases, product releases, etc.). To subscribe to SSH-Announce, send a mail message with
word “SUBSCRIBE” in the body to SSH-Announce-request@process.com.
x

Preface

mated
Obtaining Customer Support
You can use the following customer support services for information and help about SSH for
OpenVMS and other Process Software products if you subscribe to our Product Support Services.
(If you bought SSH for OpenVMS products through an authorized Process Software reseller,
contact your reseller for technical support.) Contact Technical Support directly using the following
methods:

• Electronic Mail

E-mail relays your question to us quickly and allows us to respond, as soon as we have
information for you. Send e-mail to support@process.com. Be sure to include your:

– Name
– Telephone number
– Company name
– Process Software product name and version number
– Operating system name and version number

Describe the problem in as much detail as possible. You should receive an immediate auto
response telling you that your call was logged.

• Telephone

If calling within the continental United States or Canada, call Process Software Technical
Support toll-free at 1-800-394-8700. If calling from outside the continental United States or
Canada, dial +1-508-628-5074. Please be ready to provide your name, company name, and
telephone number.

• World Wide Web

There is a variety of useful technical information available on our World Wide Web home page,
http://www.process.com (select Customer Support).

License Information
SSH for OpenVMS includes a software license that entitles you to install and use it on one
machine. Please read and understand the Software License Agreement before installing the product.
If you want to use SSH for OpenVMS on more than one machine, you need to purchase additional
licenses. Contact Process Software or your distributor for details.

Maintenance Services
Process Software offers a variety of software maintenance and support services. Contact us or your
distributor for details about these services.
xi

Preface

ng

s,
Reader’s Comments Page
The SSH for OpenVMS Administration and User’s Guide includes Reader’s Comments as the last
page. If you find an error in this guide or have any other comments about it, please let us know.
Return a completed copy of the Reader’s Comments page, or send e-mail to
techpubs@process.com.

Please make your comments specific, including page references whenever possible. We would
appreciate your comments about our documentation.

Documentation Set
The documentation set for SSH for OpenVMS consists of the following:

• Administration and User’s Guide — For system managers, general users, and those installi
the software. The guide provides installation and configuration instructions for the SSH for
OpenVMS products.

• Online help — Topical help, using HELP SSH [topic]

• Release Notes for the current version of SSH for OpenVMS — For all users, system manager
and application programmers. The Release Notes are available online on your SSH for
OpenVMS media and are accessible before or after software installation.
xii

Preface
Conventions Used

Convention Meaning

host Any computer system on the network. The local host is your computer.
A remote host is any other computer.

monospaced type System output or user input. User input is in bold type.
Example: Is this configuration correct? YES
Monospaced type also indicates user input where the case of the entry
should be preserved.

italic type Variable value in commands and examples. For example, username
indicates that you must substitute your actual username. Italic text also
identifies documentation references.

[directory] Directory name in an OpenVMS file specification. Include the brackets
in the specification.

[optional-text] (Italicized text and square brackets) Enclosed information is optional.
Do not include the brackets when entering the information.
Example: START/IP line address [info]
This command indicates that the info parameter is optional.

{value | value} Denotes that you should use only one of the given values. Do not
include the braces or vertical bars when entering the value.

Note! Information that follows is particularly noteworthy.

CAUTION! Information that follows is critical in preventing a system interruption or
security breach.

key Press the specified key on your keyboard.

Ctrl/key Press the control key and the other specified key simultaneously.

Return Press the Return or Enter key on your keyboard.
xiii

Preface
xiv

Chapter 1

Before You Begin

Introduction
This chapter introduces you to and prepares you for SSH product installation, configuration,
startup, and testing. It is for the OpenVMS system manager or technician responsible for product
installation and configuration.

Steps to Get SSH Up and Running
To get SSH up and working, you must perform the following steps:

Table 1-1 Getting SSH Up and Running

1 Load the license pack.

2 Install the software. See Chapter 2, Installing SSH for OpenVMS

3 Configure the SSH for OpenVMS
environment.

See Chapter 3, Configuring SSH for OpenVMS

4 Configure the SSH for OpenVMS
SSH V1 server.

See Chapter 4 Configuring the Secure Shell (SSH)
V1 Server

5 Configure the SSH for OpenVMS
SSH V2 server.

See Chapter 5, Configuring the Secure Shell (SSH)
V2 Server

6 Configure the SSH for OpenVMS
client.

See Chapter 6, Accessing Remote Systems with the
Secure Shell (SSH) Utilities
1-1

Before You Begin

on 5.0

o that
nt,

e
Prepare for Installation
SSH for OpenVMS installation involves using the VMSINSTAL procedure. Preparing for
installation involves:

• Understanding the hardware and software requirements

• Determining if you have sufficient disk space and global pages for the installation

• Determining where to install the software

Hardware Requirements
SSH for OpenVMS has no special hardware requirements beyond those stated in the Software
Product Description for HP’s TCP/IP Services.

Software Requirements
SSH for OpenVMS supports OpenVMS/VAX version 6.2, 7.0, 7.1, 7.2, 7.3; OpenVMS Alpha
version 6.2, 7.0, 7.1, 7.2-1, 7.2-2, 7.3; UCX version 4.2 and later, and TCP/IP Services versi
and later.

Disk Space and Global Pages
The destination device for your SSH for OpenVMS software must have enough disk space s
you can install and run the software. If you plan to install every SSH for OpenVMS compone
your system must have approximately the following values.

The runtime values are slightly higher once you configure and start SSH for OpenVMS.

You should also have at least 50,000 free global pages (GBLPAGES) on your system before
installing SSH for OpenVMS. Use SHOW GBLPAGES in the SYSGEN utility to determine th
parameter value and change it using SET GBLPAGES if necessary.

Insufficient GBLPAGES can abort the installation and leave your system command tables
disconnected. The only way to recover is through a system reboot.

System
Number of Blocks Needed to Install
SSH for OpenVMS

Number of Blocks Needed After
Installation

VAX 200,000 about 34,000

Alpha 200,000 about 46,000
1-2

 Before You Begin

General Requirements
Check at this point that you:

• Have OPER, SYSPRV, or BYPASS privileges

• Can log in to the system manager’s account

• Are the only user logged in (recommended)

• Backed up your system disk on a known, good, current, full backup (recommended)

• Need to reinstall SSH for OpenVMS after performing a major VMS upgrade

• If SSH for OpenVMS is currently running, shut it down. This is mandatory.

• Ensure TCP/IP Services (or UCX) is currently running.

Where to Install SSH for OpenVMS
Install SSH for OpenVMS in a location depending on the following:

• Generally, on your system disk, but you can install SSH for OpenVMS anywhere, just answer
the question when it appears. This is also where you would keep your "common" files. Node-
specific files should always be on your system disk.

• If the machine is in a single platform cluster, on a common disk.

• If the machine is in a mixed platform cluster, once on the Alpha system disk (or disks) and once
on the VAX common system disk.

Release Notes and Online Documentation
The SSH for OpenVMS Release Notes provide important information on the current release. If you
are installing from CD-ROM, you can access the Release Notes and the full SSH for OpenVMS
documentation as PDF files. They are in the [DOCUMENTATION] directory. The Release Notes
for this product are in the file SSH010.RELEASE_NOTES. The other file
(MULTINET044.RELEASE_NOTES) may be ignored.

• If you are installing from disk, you can read or print the Release Notes as a text file, which you
can obtain in one of three ways:

– By performing a partial installation
– During the full installation
– After the installation

To perform a partial installation (see Example 1-1):

1 Invoke VMSINSTAL at the system prompt:

$ @SYS$UPDATE:VMSINSTAL MULTINET044 device OPTIONS N

The device is the mount location of the distribution volumes.

2 Press Return at the prompt

Are you satisfied with the backup of your system disk [YES]?.
1-3

Before You Begin
3 Select the option by number as to whether you want to display or print the Release Notes, or
both.

4 If you requested a printout, enter the queue name for the printer. The default is SYS$PRINT.

5 Press Return at the prompt

Do you want to continue the installation [NO]?:.

 (Note that if you enter YES at the prompt, you proceed with the full installation.)

6 You see the message

Product’s release notes have been moved to SYS$HELP.

7 If you want to read or print the Release Notes after you exit the installation, you can access the
MULTINET044.RELEASE_NOTES and SSH010.RELEASE_NOTES files in the SYS$HELP
directory, as in:

$ TYPE SYS$HELP:MULTINET044.RELEASE_NOTES

or

$ TYPE SYS$HELP:SSH010.RELEASE_NOTES

Note! For this command to work as desired, do not redefine the SYS$HELP directory logical.

Example 1-1 Performing a Partial Installation to Obtain the Release Notes

$ @SYS$UPDATE:VMSINSTAL MULTINET044 DKA300: OPTIONS N [1]

 OpenVMS AXP Software Product Installation Procedure V7.1
It is 3-JUNE-2002 at 11:01.
Enter a question mark (?) at any time for help.
* Are you satisfied with the backup of your system disk [YES]? Return [2]
The following products will be processed:
 MULTINET V4.4
 Beginning installation of MULTINET V4.4 at 11:01
%VMSINSTAL-I-RESTORE, Restoring product save set A ...
 Release notes included with this kit are always copied to SYS$HELP.
Additional Release Notes Options:
 1. Display release notes
 2. Print release notes
 3. Both 1 and 2
 4. None of the above

* Select option [2]: Return [3]

* Queue name [SYS$PRINT]: Return [4]
Job MULTINET044 (queue SYS$PRINT, entry 1) started on SYS$PRINT

* Do you want to continue the installation [NO]? Return [5]
%VMSINSTAL-I-RELMOVED, Product’s release notes have been moved to SYS$HELP.
 VMSINSTAL procedure done at 11:02

.

1-4

 Before You Begin

.

.
$ TYPE SYS$HELP:MULTINET044.RELEASE_NOTES [6]

$TYPE SYS$HELP:SSH010.RELEASE_NOTES [7]
1-5

Before You Begin
1-6

Chapter 2

Installing SSH for OpenVMS

Introduction
This chapter takes you through the SSH for OpenVMS product installation procedure and certain
post-installation tasks. It is for the OpenVMS system manager, administrator, or technician
responsible for product installation.

To prepare for installation, see Chapter 1, Before You Begin.

Note! Once you have installed SSH for OpenVMS, you need to reinstall it after you have done a major
VMS upgrade.

To install SSH for OpenVMS:

1 Load the software.

2 Run the VMSINSTAL procedure.

3 Install other products, if needed, and perform post-installation tasks.

Load the Software
SSH for OpenVMS is shipped to you on CD-ROM media.

There are three steps to loading the SSH for OpenVMS software:

1 Log in to the system manager’s account.

2 If SSH for OpenVMS is currently running, shut it down:

$ SSHCTRL SHUTDOWN

If you are installing on a VMScluster, shut down SSH for OpenVMS on each node in the cluster.

3 Physically load the distribution media onto the appropriate device.

• In a VMScluster environment, if you want to access the media from more than one node,
enter the following:
2-1

Installing SSH for OpenVMS

$ MOUNT/CLUSTER/SYSTEM device MULTINET044

• On a standalone system, or if you want to prevent multiple users from accessing the software,
enter the following:

$ MOUNT device MULTINET044

Note! If you install SSH for OpenVMS on a VMS cluster that has a common system disk, install the
software on only one node in the cluster. If reinstalling or upgrading SSH for OpenVMS, first
shut down SSH for OpenVMS on all nodes in the cluster.

Be sure to configure SSH for OpenVMS on all systems in a VMS cluster that has a common
system disk, even though it only needs to be installed once.

Start VMSINSTAL
VMSINSTAL is the VMS installation program for layered products. VMSINSTAL prompts you for
any information it needs. Table 2-1 shows the steps to follow.

Table 2-1 Starting VMSINSTAL

Step For this task... Enter this response...

1 Make sure that you are logged in to the
system manager’s account, and invoke
VMSINSTAL

@SYS$UPDATE:VMSINSTAL

2 Determine if you are satisfied with
your system disk backup

Return or Y (Yes) or N (No)

3 Determine where the distribution
volumes will be mounted

The disk (and directory) or tape device where
you want the software to be mounted.

4 Enter the products you want processed
from the first distribution volume set

MULTINET044

5 Enter the installation options you wish
to use (such as obtaining the Release
Notes)

Return for no options or N for Release Notes.

6 Specify the directory where you want
the files installed.

Return if accepting default of
SYS$SYSDEVICE:[MULTINET]

7 Specify the directory where you want
the system-specific files installed

Return if accepting default of
[<nodename>];e.g, [ROSES]

8 Specify that you are performing an
SSH for OpenVMS installation.

Enter “Y” to install SSH for VMS.
2-2

 Installing SSH for OpenVMS

Sample Installation
$ @SYS$UPDATE:VMSINSTAL MULTINET044 DEVICE:[MULTINET044]

 OpenVMS AXP Software Product Installation Procedure V7.3

It is 10-JUN-2002 at 12:21.

Enter a question mark (?) at any time for help.

%VMSINSTAL-W-ACTIVE, The following processes are still active:
TCPIP$FTP_1

* Do you want to continue anyway [NO]? y
* Are you satisfied with the backup of your system disk [YES]?

The following products will be processed:

 MULTINET V4.4

 Beginning installation of MULTINET V4.4 at 11:29

%VMSINSTAL-I-RESTORE, Restoring product save set A ...
%VMSINSTAL-I-RELMOVED, Product’s release notes have been moved to
SYS$HELP.

* Where do you want to install MultiNet [SYS$SYSDEVICE:[MULTINET]]:
* What do you want to call the system-specific directory [PHNTOM]:

 You may perform one of the following:

 - Full MultiNet installation
 - SSH for OpenVMS installation

 Note that you must have the appropriate license for
 the selection you make.

* Are you doing an SSH for OpenVMS installation only (YES/NO) [N]? Y

 SSH for OpenVMS
 MultiNet (R)

ALL RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF THE UNITED STATES

This licensed material is the valuable property of Process Software.
Its use, duplication, or disclosure is subject to the restrictions set
forth in the License Agreement.

Other use, duplication or disclosure, unless expressly provided for in

the license agreement, is unlawful.
2-3

Installing SSH for OpenVMS
Installing SSH for OpenVMS V1.0 Rev A
* Do you want to install the online documentation [YES]?

 The HTML documentation requires 700 blocks.

* Do you want to install the HTML documentation [YES]?

 The PDF documentation requires 1640 blocks.

* Do you want to install the PDF documentation [YES]?

 The SSH for OpenVMS software will be installed with these
 selected components:

 * Online documentation

 - HTML Documentation

 - PDF Documentation

* Would you like to change your selections [NO]?
* Do you want to purge files replaced by this installation [YES]?
* Configure SSH for OpenVMS after installation [NO]?
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.HELP].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$COMMON_ROOT:[MULTINET].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$COMMON_ROOT:[MULTINET.HELP].

The installation will now proceed with no further questions.

%VMSINSTAL-I-RESTORE, Restoring product save set Y ...
%MULTINET-I-INSTALLING, Installing SSH for OpenVMS files
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$COMMON_ROOT:[MULTINET.PSCSSH].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.PSCSSH].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.PSCSSH.LOG].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH2].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH2.HOSTKEYS].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH2.KNOWNHOSTS].
%MULTINET-I-CREATING, Creating SSH for OpenVMS startup file
2-4

 Installing SSH for OpenVMS

 * *
 * *
 * *
 * To start SSH for OpenVMS, add the following line to your *
 * *
 * SYSTARTUP_VMS.COM file after you have configured SSH for *
 * *
 * OpenVMS: *
 * *
 * *
 * $ @SYS$STARTUP:PSCSSH$STARTUP *
 * *
 * *

%MULTINET-I-INSTALLING, Installing the online documentation files
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$SPECIFIC_ROOT:[MULTINET.PSCSSH.DOCUMENTS].
%VMSINSTAL-I-SYSDIR, This product creates system disk directory
MU$COMMON_ROOT:[MULTINET.PSCSSH.DOCUMENTS].
%MULTINET-I-INSTALLING, Installing SSH for OpenVMS HELP library
%MULTINET-I-DELETING, Deleting obsolete MultiNet files
%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target
directories...

 Installation of MULTINET V4.4 completed at 12:33

 Adding history entry in VMI$ROOT:[SYSUPD]VMSINSTAL.HISTORY

 Creating installation data file:
VMI$ROOT:[SYSUPD]MULTINET044.VMI_DATA

Installing SSH for OpenVMS on a Common VMScluster
System Disk

After installing SSH for OpenVMS on one node of a VMScluster with a common system disk, you
must perform the following steps on each additional cluster node that shares the common system
disk:

1 Log in (telnet/set host/etc.) to the next node of the cluster.

2 Create the MULTINET logicals by using the following command:
$ @SYS$STARTUP:PSCSSH$STARTUP LOGICALS

3 Make the node-specific SSH root and configure SSH for this node:
$ @MULTINET:SSH_MAKE_ROOT
2-5

Installing SSH for OpenVMS
4 Start SSH for OpenVMS:
$ @SYS$STARTUP:PSCSSH$STARTUP

5 Repeat steps 1-4 for each remaining node of the cluster except for the one where SSH was
originally installed.

Installing SSH for OpenVMS on Mixed Platform
Clusters

SSH for OpenVMS has no files which can be shared between cluster systems of different
architectures.
2-6

Chapter 3

Configuring SSH for OpenVMS

Introduction
This chapter describes how to configure the SSHD Master process, which controls access to the
SSH servers for the SSH for OpenVMS software.

For a basic configuration, accept the default values for each component, which appear after a
prompt. This also helps you step through the process more quickly.

After performing the basic configuration, you must perform the advanced configuration for the
SSH1 and SSH2 servers, and for the SSH clients as desired. Chapters 4 through 7 describe the
configuration and use of these components.

The SSH Configuration Utility
SSH is the Secure Shell protocol. SSH for OpenVMS provides support for both SSH Version 1
protocol and SSH Version 2 protocol.

Please note that in addition to the configuration performed via CNFSSH as described below, there
are configuration files for both the SSH1/SSH2 servers and SSH client which must be modified as
appropriate to meet the security requirements of your organization. Refer to chapters 4 and 5 of
this manual for details on the configuration files.
3-1

Configuring SSH for OpenVMS
You can enable the SSH utility as shown in Example 3-1.

Example 3-1 Using the SSH Utility

$ @MULTINET:CNFSSH CONFIGURE

SSH for OpenVMS Version V1.0A SSH Configuration procedure

This procedure helps you define the parameters needed to get SSH for
OpenVMS running on this system.

This procedure creates the configuration data file,
MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH]SSH_CONFIGURE.COM,to reflect
your system’s configuration.

For detailed information on the following parameters, refer to the SSH
for OpenVMS Administration and User’s Guide.

SSH for OpenVMS supports both SSH1 and SSH2 servers. You may configure
SSH for OpenVMS to support either SSH1 servers or SSH2 servers, or both.
Note that the choice of either or both servers has no impact on the SSH
for OpenVMS client, which supports both SSH1 and SSH2 remote servers.

Do you want to enable the SSH1 server [NO]? YES
Do you want to enable the SSH2 server [NO]? YES

For SSH1, you must specify the number of bits in the RSA key. The range
is 512 to 32768 bits, but keys longer than 1024 are generally not much
safer, and they significantly increase the amount of CPU time consumed
by key generation when the SSHD_MASTER process is starting.

Enter the number of bits in the RSA key [768]:

You may specify an alternate configuration file for the SSH1 server. If
you have already specified an alternate config file, enter a single
space and hit RETURN at the prompt to reset it to the default file name.

Enter an alternate SSH1 configuration filename []:

You may specify an alternate configuration file for the SSH2 server. If
you have already specified an alternate config file, enter a single
space and hit RETURN at the prompt to reset it to the default file name.

Enter an alternate SSH2 configuration filename []:

Specify the level of debug for the SSH1 and SSH2 servers.

For SSH1, any non-zero value will turn on debug, but there is no "degree
of debug".

For SSH2, this is a value from 0 to 50, where zero is no debug and 50 is
the maximum level of debug. Note that at levels exceeding debug level
8,there may be a substantial impact on SSH2 server (and possibly, the
system,too) performance due to the amount of information logged.
3-2

 Configuring SSH for OpenVMS

Enter the debug level [0 - 50]:

For SSH1, you may enter the name of an alternate RSA host key file. If
you have already specified an alternate host key file, enter a single
space and hit RETURN at the prompt to reset it to the default file name.

Enter an alternate SSH1 public server host key file []:

Specify the time in seconds after which the server private key is
generated. This is only done for SSH1 sessions.

Enter the key regeneration time [3600]:

You may specify the number of seconds a user has to enter a password
during user authentication (default = 0). In addition, you may allow
this to default to the value used by OpenVMS when a user is logging into
a non-SSH session. To specify an infinite wait time, enter 0 for the
timeout value.

Do you want to change the default login grace time [NO]?

Specify the port for the SSH server to listen on, if you wish to use a
port other than the default port of 22.

Enter port to use [22]:
Do you want any messages logged by the SSH server at all [YES]?
Do you want verbose logging by the SSH server [NO]?

You may specify the maximum number of concurrent SSH sessions to be
allowed on the server. This is the total of both SSH1 and SSH2
sessions. The default is 1000 sessions.

Enter maximum number of concurrent SSH sessions [1-1000, 1000]:

In OpenVMS, users with passwords that have expired because the SYSUAF
PWDLIFETIME value has been exceeded are allowed to log into the system,
and are then forced to change their password. The SSH1 protocol does
not allow for that condition. Answer "YES" to the following question if
you wish to allow users with expired passwords to still log into the
system. They WILL NOT be forced to change their password.

Note that the SSH2 protocol is not restricted as the SSH1 protocol is;
changing of expired passwords, save for pre-generated passwords, is
performed by many SSH2 clients (including the SSH for OpenVMS client).

Do you want to allow users with expired passwords to log in [NO]?

In OpenVMS, users with passwords that have been pre-expired by the
system manager are allowed to log into the system, and are then forced
to change their password. The SSH1 protocol does not allow for that
condition. Answer "YES" to the following question if you wish to allow
users with pre-expired passwords to still log into the system. They
WILL NOT be forced to change their password.

Note that the SSH2 protocol is not restricted as the SSH1 protocol is;
3-3

Configuring SSH for OpenVMS
changing of expired passwords, save for pre-generated passwords, is
performed by many SSH2 clients (including the SSH for OpenVMS client).

Do you want to allow users with preexpired passwords to log in [NO]?

The SSH1 protocol does not permit the display of the contents of the
SYS$ANNOUNCE logical or file prior to a user logging in. Answering "Y"
to the next question will cause the SSH for OpenVMS client to display
the contents of SYS$ANNOUNCE after user authentication is completed but
before the contents of SYS$WELCOME are displayed.

Do you want to display SYS$ANNOUNCE [NO]?

When generating user keys, a passphrase may be used to further protect
the key. No limit is normally enforced for the length of the
passphrase. However, you may specify a minimum length the passphrase may
be.

What you want the minimum passphrase length to be for SSH1 [0-1024, 0]?
What you want the minimum passphrase length to be for SSH2 [0-1024, 0]?

The SSH1 host key has not yet been generated. Answer YES to the
following question to generate the key now. Answer NO to generate
the key manually later by issuing the command:

 $ MULTINET SSHKEYGEN /SSH1/HOST

Generating a host key can take a few minutes on slow systems.

Do you want to generate the SSH1 host key now [Y]?
Initializing random number generator...
Generating p: ++ (distance 238)
Generating q: ..++
(distance 842)
Computing the keys...
Testing the keys...
Key generation complete.
Key file will be MULTINET_ROOT:[MULTINET.PSCSSH.SSH]SSH_HOST_KEY.
Your identification has been saved in
MULTINET_ROOT:[MULTINET.PSCSSH.SSH]SSH_HOST_KEY..
Your public key is:
1024 33
15821952685470837322327354967189853848401938205654075618074325189600826
8
48367224919257232067933619163719764793125246848492474238176919275217552
999742062
80407940365239518329686395794571444672063001691034673198381673202473106
563769428
30338428649813169988704931451943380484496221966866623577435879842456222
157799
SYSTEM@rose.flower.com
Your public key has been saved in
MULTINET_ROOT:[MULTINET.PSCSSH.SSH]SSH_HOST_KEY.pub
3-4

 Configuring SSH for OpenVMS

The SSH2 host key has not yet been generated. Answer YES to the
following question to generate the key now. Answer NO to generate the
key manually later by issuing the command:

 $ MULTINET SSHKEYGEN /SSH2/HOST

Generating a host key can take a few minutes on slow systems.

Do you want to generate the SSH2 host key now [Y]?
Generating 1024-bit dsa key pair
 3 o.oOo.oOo.oo
Key generated.
1024-bit dsa, dilbert@rose.flower.com, Thu May 02 2002 08:21:41
Private key saved to multinet_ssh2_hostkey_dir:hostkey.
Public key saved to multinet_ssh2_hostkey_dir:hostkey.pub

SSH Configuration completed.

Review the additional steps you may need to perform as described in the
configuration chapters of the SSH for OpenVMS Administration and User’s
Guide before starting SSH.

Refer to the "Monitoring and Controlling SSH" chapter of the SSH for
OpenVMS Administration and User’s Guide for information on starting SSH.

3-5

Configuring SSH for OpenVMS
3-6

Chapter 4

Configuring the Secure Shell (SSH) V1 Server

This chapter describes how to configure and maintain the SSH for OpenVMS SSH1 server.

This is the server side of the software that allows secure interactive connections from other
computers in the manner of rlogin/rshell/telnet. The SSH server has been developed to discriminate
between SSH v1 and SSH v2 protocols, so the two protocols can coexist simultaneously on the
same system.

SSH1 and SSH2 Differences
SSH1 and SSH2 are different, and incompatible, protocols. The SSH1 implementation is based on
the V1.5 protocol and 1.3.7 F-Secure code base, and the SSH2 implementation is based on the V2
protocol and the F-Secure 3.1.0 code base. While SSH2 is generally regarded to be more secure
than SSH1, both protocols are offered by SSH for OpenVMS, and although they are incompatible,
they may exist simultaneously on a system. The server front-end identifies what protocol a client
desires to use, and will create an appropriate server for that client.

Restrictions:
When using SSH to connect to a VMS server, if the VMS account is set up with a secondary
password, SSH does not prompt the user for the secondary password. If the VMS primary password
entered is valid, the user is logged in, bypassing the secondary password.

When using SSH to execute single commands (in the same manner as RSHELL), some keystrokes
like CTRL/Y are ignored. In addition, some interactive programs such as HELP may not function
as expected. This is a restriction of SSH. If this behavior poses a problem, log into the remote
system using SSH in interactive mode to execute the program.
4-1

Configuring the Secure Shell (SSH) V1 Server

 on

lly,
is
d, and
Understanding the Secure Shell Server
The Secure Shell daemon (SSHD) is the daemon program for SSH that listens for connections from
clients. The server program replaces rshell and telnet programs. The server/client programs provide
secure encrypted communications between two untrusted hosts over an insecure network. A new
daemon is created for each incoming connection. These daemons handle key exchange, encryption,
authentication, command execution, and data exchange.

Servers and Clients
An SSH server is an OpenVMS system that acts as a host for executing interactive commands or
for conducting an interactive session. The server software consists of two pieces of software (for
future reference, “SSHD” will refer to both SSHD_MASTER and SSHD, unless otherwise
specified):

• SSHD_MASTER, recognizes the differences between SSH v1 and SSH v2 and starts the
appropriate server. If the request is for SSH v1, then the SSH v1 server is run; if the request is for
SSH v2, then the SSH v2 server is run.

• SSHD, a copy of which is spawned for each connection instance. SSHD handles all the
interaction with the SSH client.

A client is any system that accesses the server. A client program (SSH) is provided with SSH for
OpenVMS, but any SSH client that uses SSH version 1 protocol may be used to access the server.
Examples of such programs are SSH for OpenVMS, MultiNet SSH, TCPware SSH, and FISSH on
OpenVMS; SecureCRT and TTSSH on Windows®-based systems; and other SSH programs
UNIX-based systems.

Security
Each host has a host-specific RSA key (normally 1024 bits) that identifies the host. Additiona
when the SSHD daemon starts, it generates a server RSA key (normally 768 bits). This key
regenerated every hour (the time may be changed in the configuration file) if it has been use
is never stored on disk. Whenever a client connects to the SSHD daemon,

• SSHD sends its host and server public keys to the client.

• The client compares the host key against its own database to verify that it has not changed.

• The client generates a 256 bit random number. It encrypts this random number using both the
host key and the server key, and sends the encrypted number to the server.

• The client and the server start to use this random number as a session key which is used to
encrypt all further communications in the session.

The rest of the session is encrypted using a conventional cipher. Currently, IDEA (the default),
DES, 3DES, BLOWFISH, and ARCFOUR are supported.

• The client selects the encryption algorithm to use from those offered by the server.

• The server and the client enter an authentication dialog.

• The client tries to authenticate itself using:

– .rhosts authentication
4-2

 Configuring the Secure Shell (SSH) V1 Server

this

ords

– .rhosts authentication combined with RSA host authentication
– RSA challenge-response authentication
– password-based authentication

Note! Rhosts authentication is normally disabled because it is fundamentally insecure, but can be
enabled in the server configuration file, if desired.

System security is not improved unless the RLOGIN and RSHELL services are disabled.

If the client authenticates itself successfully, a dialog is entered for preparing the session. At
time the client may request things like:

• forwarding X11 connections

• forwarding TCP/IP connections

• forwarding the authentication agent connection over the secure channel

Finally, the client either requests an interactive session or execution of a command. The client and
the server enter session mode. In this mode, either the client or the server may send data at any
time, and such data is forwarded to/from the virtual terminal or command on the server side, and
the user terminal in the client side. When the user program terminates and all forwarded X11 and
other connections have been closed, the server sends command exit status to the client, and both
sides exit.

Options
The SSHD Master process is configured via the CNFSSH command procedure. This procedure
creates the SSH_DIR:SSH_CONFIGURE.COM file, and this is used when starting up the SSHD
Master process. Once CNFSSH is used to modify the SSHD Master options, SSH should be
restarted using @SYS$STARTUP:PSCSSH$STARTUP.COM.

Note! The recommended method to start the SSHD Master process is to use the
@SYS$STARTUP:PSCSSH$STARTUP command. All of these options are set using
@MULTINET:CNFSSH CONFIGURE

Configuration File
The individual SSHD server processes read configuration data from SSH_DIR:SSHD_CONFIG
(or the file specified via the CNFSSH procedure). The file contains keyword value pairs, one per
line. Lines starting with ‘#’ and empty lines are interpreted as comments. The following keyw
are possible. Keywords are case insensitive.

Note! HP’s TCP/IP services do not use the traditional UNIX rhosts and hosts.equiv files; it uses a
proprietary format. Therefore, any information added to HP’s files via the “ADD PROXY”
command must also be manually added to the SSH_DIR:RHOSTS and
SSH_DIR:HOSTS.EQUIV files in order for it to be used by SSH for OpenVMS.
4-3

Configuring the Secure Shell (SSH) V1 Server
Table 4-1 Configuration File Keywords [SSHD_CONFIG]

Keyword Value Default Description

AllowForwardingPort Port List Can be followed by any
number of port numbers,
separated by spaces. Remote
forwarding is allowed for those
ports whose number matches
one of the patterns.

You can use ‘*’ as a wildcard
entry for all ports.

You can use these formats ‘>x’,
‘<x’, and ‘x_x’ to specify
greater than, less than, or
inclusive port range. By
default, all port forwardings are
allowed.
4-4

 Configuring the Secure Shell (SSH) V1 Server

AllowForwardingTo Host/port
 list

Can be followed by any
number of hostname and port
number patterns, separated by
spaces. A port number pattern
is separated from a hostname
pattern by a colon.
Forwardings from the client are
allowed to those hosts and port
pairs whose name and port
number match one of the
patterns.

You can use ‘*’ and ‘?’ as
wildcards in the patterns for
host names. Normal name
servers are used to map the
client’s host into a fully-
qualified host name. If the
name cannot be mapped, its IP
address is used as the
hostname.

You can use ‘*’ as a wildcard
entry for all ports.

You can use these formats ‘>x’,
‘<x’, and ‘x_x’ to specify
greater than, less than, or
inclusive port range. By
default, all port forwardings are
allowed.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-5

Configuring the Secure Shell (SSH) V1 Server
AllowGroups List Can be followed by any
number of OpenVMS rights
identifier patterns, separated by
spaces. Login is allowed only if
the user’s list of rights
identifiers contains an
identifier that matches one of
the patterns.

You can use ‘*’ and ‘?’ as
wildcards in the patterns. By
default, logins as all users are
allowed.

Note! All other login
authentication steps
must be completed
successfully.

DenyGroups is an additional
restriction.

AllowHosts Host list Can be followed by any
number of host name patterns,
separated by spaces. Login is
allowed only from hosts whose
name matches one of the
patterns.

You can use ‘*’ and ‘?’ as
wildcards in the patterns.
Normal name servers are used
to map the client’s host into a
fully-qualified host name. If
the name cannot be mapped, its
IP address is used as the
hostname. By default, all hosts
are allowed to connect.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-6

 Configuring the Secure Shell (SSH) V1 Server

AllowSHosts Host list Can be followed by any
number of host name patterns,
separated by spaces. .SHOSTS
(and .RHOSTS and
SSH_DIR:HOSTS.EQUIV)
entries are honored for hosts
whose name matches one of the
patterns. Servers are used to
map the client’s host into a
fully-qualified host name. If
the name cannot be mapped, its
IP address is used as the host
name. By default, all hosts are
allowed to connect.

AllowTcpForwarding Y/N Y Specifies whether TCP
forwarding is permitted.

Note! Disabling TCP
forwarding does not
improve security in
any way, as users can
always install their
own forwarders.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-7

Configuring the Secure Shell (SSH) V1 Server
AllowUsers User list Can be followed by any
number of user name patterns
or user@host patterns,
separated by spaces. Host name
may be either the DNS name or
the IP address. Login is
allowed only for users whose
name matches one of the
patterns.

You can use ‘*’ and ‘?’ as
wildcards in the patterns. By
default, logins as all users are
allowed.

Note! All other login
authentication steps
must be completed
successfully.

DenyUsers is an additional
restriction.

DenyForwardingPort Port list Can be followed by any
number of port numbers,
separated by spaces. Remote
forwardings are disallowed for
those ports whose number
matches one of the patterns.

You can use ‘*’ as a wildcard
entry for all ports.

You can use these formats ‘>x’,
‘<x’, and ‘x_x’ to specify
greater than, less than, or
inclusive port range.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-8

 Configuring the Secure Shell (SSH) V1 Server

DenyForwardingTo Host/port
list

Can be followed by any
number of hostname and port
number patterns, separated by
spaces. A port number pattern
is separated from a hostname
by a colon. Forwardings from
the client are disallowed to
those hosts and port pairs
whose name and port number
match one of the patterns.

You can use ‘*’ and ‘?’ as
wildcards in the patterns for
host names. Normal name
servers are used to map the
client’s host into a fully-
qualified host name. If the
name cannot be mapped, its IP
address is used as a host name.

You can use ‘*’ as a wildcard
entry for all ports.

You can use these formats ‘>x’,
‘<x’, and ‘x_x’ to specify
greater than, less than, or
inclusive port range.

DenyGroups Rights list Can be followed by any
number of OpenVMS rights
identifier patterns, separated by
spaces. Login is disallowed
only if the user’s list of rights
identifiers contains an
identifier that matches one of
the patterns.

DenyHosts Host list Can be followed by any
number of host name patterns,
separated by spaces. Login is
disallowed from the host whose
name matches any of the
patterns.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-9

Configuring the Secure Shell (SSH) V1 Server
DenySHosts Host list Can be followed by any
number of host name patterns,
separated by spaces. .SHOSTS
(and .RHOSTS and
SSH_DIR:HOSTS.EQUIV)
entries whose name matches
any of the patterns are ignored.

DenyUsers User list Can be followed by any
number of user name patterns
or user@host patterns,
separated by spaces. A host
name may be either the DNS
name or the IP address. Login
is disallowed for a user whose
name matches any of the
patterns.

HostKey Filename SSH_HOST_KEY Specifies the file containing the
private key.

IdleTimeout Time 0 Sets the idle timeout limit in:

• seconds (s or nothing after
the number)

• minutes (m)

• hours (h)

• days (d)

• weeks (w)

If the connection has been idle
(all channels) for the time
specified, the process is
terminated and the connection
is closed.

An idle process is one that has
done no I/O to stdin or stdout
in the timeout value.

The default value of 0 (zero)
for IdleTimeout means no
timeout.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-10

 Configuring the Secure Shell (SSH) V1 Server

IgnoreRhosts Y/N N Specifies that the
SYS$LOGIN:RHOSTS file will
not be used in authentication.
SSH_DIR:HOSTS.EQUIV is
still used.

KeepAlive Y/N Y Specifies whether the system
should send keepalive
messages to the other side. If
sent, termination of the
connection or crash of one of
the machines will be noticed.
This means that connections
will terminate if the route is
down temporarily.

If keepalives are not ended,
sessions may hang indefinitely
on the server, leaving “ghost”
users and consuming server
resources.

To disable keepalives, set the
value to no in both the server
and the client configuration
files.

KeyRegenerationInterval Time 3600 Specifies how long to wait
before the server key is
regenerated automatically.
Regeneration prevents
decrypting captured sessions
by later breaking into the
machine and stealing the keys.
The key is never stored on disk.
If the value is 0, the key is
never regenerated.

ListenAddressee Specifies the IP address of the
interface where the SSHD
server socket is BIND.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-11

Configuring the Secure Shell (SSH) V1 Server
LoginGraceTime Time 600 Specifies the time the server
should disconnect if the user
has not logged in successfully.
If the value is 0, there is no
time limit. The default is 600
seconds.

PasswordAuthentication Y/N Y Specifies whether password
authentication is allowed. The
default is yes.

PermitEmptyPasswords Y/N N Specifies whether the server
allows login to accounts with
empty password strings when
password authentication is
allowed. The default is no.

Note! Use of this keyword
may contribute to your
system becoming
insecure. Process
Software encourages
you to NOT enable the
use of empty
passwords.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-12

 Configuring the Secure Shell (SSH) V1 Server

PermitRootLogin Y/N N Specifies whether the user can
log in as SYSTEM using SSH.
This keyword may be set to:

yes — allows SYSTEM logins
through any of the
authentication types allowed
for other users.

no (default) — disables
SYSTEM logins through any
of the authentication methods
(nopwd and no are equivalent),
unless you have a rhosts or
SYS$DISK:[<login_dir>.S
SH]AUTHORIZED_KEYS file in
the SYS$MANAGER
directory.

nopwd — disables password-
authenticated SYSTEM logins.

System login with RSA
authentication when the
“command” option has been
specified is allowed regardless
of the value of this keyword
(which may be useful for
taking remote backups even if
SYSTEM login is not allowed).

QuietMode Y/N N Specifies whether the system
runs in quiet mode. In quiet
mode, nothing is logged in the
system log, except fatal errors.

RandomSeed Filename Random_seed Specifies the SSH:DIR file
containing the random seed for
the server. This file is created
automatically and updated
regularly.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-13

Configuring the Secure Shell (SSH) V1 Server
RhostsAuthentication Y/N N Specifies whether
authentication using
SYS$LOGIN:RHOSTS or
SSH_DIR:HOSTS.EQUIV files
is sufficient. Normally, this
method should not be permitted
because it is insecure. Use
RhostsRSAAuthentication
because it performs RSA-based
host authentication in addition
to normal rhosts or
SSH_DIR:HOSTS.EQUIV
authentication. The default is
no.

RhostsRSAAuthentication Y/N Y Specifies whether
SYS$LOGIN:RHOSTS or
SSH_DIR:HOSTS.EQUIV
authentication together with
successful RSA host
authentication is allowed.

RSAAuthentication Y/N Y Specifies whether pure RSA
authentication is allowed.

SilentDeny Y/N Y Specifies whether denied (or
not allowed) connections are
denied silently (just close the
connection, no logging, etc.) or
if they are closed cleanly (send
an error message and log the
connection attempt). Defaults
to silent mode, yes.

StrictIntrusionLogging Y/N Y Log intrusion attempts for all
failed authentication methods.

StrictModes Y/N Y Specifies whether SSH should
check file protection and
ownership of the user’s home
directory and rhosts files before
accepting login.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-14

 Configuring the Secure Shell (SSH) V1 Server

t

ot

Starting the SSH Server for the First Time
Follow these instructions to configure the SSH server. If SSH isn’t currently running, you mus
define the MULTINET logicals by using:

$ @SYS$STARTUP:PSCSSH$STARTUP LOGICALS

1 Use the CNFSSH utility to configure the SSH server.

Note! SSH for OpenVMS must be running before issuing the SSHKEYGEN command.

2 Use SSHKEYGEN to create the file SSH_HOST_KEY in the SSH_DIR: directory if it has n
been created as a result of executing @MULTINET:CNFSSH CONFIGURE.

$ MULTINET SSHKEYGEN/SSH1/HOST
Initializing random number generator...
Generating p: ...++ (distance 64)
Generating q: ++ (distance 516)
Computing the keys...
Testing the keys...
Key generation complete.
Key file will be MULTINET_ROOT:[MULTINET.PSCSSH.SSH]SSH_HOST_KEY
Your identification has been saved in
MULTINET_ROOT:[MULTINET.PSCSSH.SSH]SSH_HOST_KEY
Your public key is:
1024 37
1210318365576698697865367869291969476388228444969905611864276308
9072776904462744415966821020109463617644202397294642277946718549
4404442577594868297087171013359743853182442579923801302020844011
5343754909847513973160249324735913146330232410424936751015953611
18716872491123857940537322891584850459319961275605927
SYSTEM@gg1.prr.com
Your public key has been saved in
MULTINET_ROOT:[MULTINET.PSCSSH.SSH]SSH_HOST_KEY.PUB

SyslogFacility Syslog
level

“AUTH” Gives the facility code that is
used when logging messages
from SSHD. Any valid syslog
facility code may be used.

X11DisplayOffset #offset 10 Specifies the first display
number available for SSHD’s
X11 forwarding. This prevents
SSHD from interfering with
real X11 servers.

Table 4-1 Configuration File Keywords [SSHD_CONFIG] (Continued)

Keyword Value Default Description
4-15

Configuring the Secure Shell (SSH) V1 Server
3 Edit the default configuration file at SSH_DIR:SSHD_CONFIG (if you wish to change the
default settings). This default configuration is the same as contained in the file
MULTINET:SSHD_CONFIG.TEMPLATE

Note! As delivered, the template file provides a reasonably secure SSH environment. However,
Process Software recommends this file be examined and modified appropriately to reflect the
security requirements of your organization.

4 Restart SSH. This creates the SSH server process and defines the SSH logical names.

$ SSHCTRL RESTART
$ SHOW PROCESS "SSHD Master"

7-JUN-2002 09:03:06.42 User: SYSTEM Process ID: 00000057
 Node: PANTHR Process name: "SSHD Master"

Terminal:
User Identifier: [SYSTEM]
Base priority: 4
Default file spec: Not available
Number of Kthreads: 1

Devices allocated: BG1:
 BG2:

$ SHOW LOGICAL/SYSTEM SSH*

(LNM$SYSTEM_TABLE)

 "SSH_DIR" = "MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH]"
 "SSH_EXE" = "MULTINET_COMMON_ROOT:[MULTINET.PSCSSH.SSH]"
 "SSH_LOG" = "MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH.LOG]"
 "SSH_MAX_SESSIONS" = "100"
 "SSH_TERM_MBX" = "MBA36:"

Changing SSH Configuration File After Enabling SSH
If you make a change to the SSH configuration file after you have enabled SSH, you have to restart
SSH. To have the changes take effect, use the command:

$ SSHCTRL RESTART
4-16

 Configuring the Secure Shell (SSH) V1 Server

rated

Connection and Login Process
To create a session, SSHD does the following:

1 SSHD_MASTER sees the connection attempt. It creates an SSHD process, passing the
necessary information to it, such as the server key and operating parameters.

2 SSHD performs validation for the user.

3 Assuming the login is successful, SSHD creates a pseudo terminal for the user (an _FTAnn:
device). This device is owned by the user attempting to log in.

4 SSHD creates an interactive process on the pseudo terminal, using the username, priority, and
privileges of the user who is attempting to log in. If a command was specified, it is executed and
the session is terminated.

5 SSH generates the file SSH_LOG: SSHD.LOG for each connection to the SSH server. Many
connections result in many log files. Instead of purging the files on a regular basis, use the
following DCL command to limit the number of versions:

$ SET FILE /VERSION_LIMIT=x SSH_LOG:SSHD.LOG

Note! The value for /VERSION_LIMIT must not be smaller than the maximum number of
simultaneous SSH sessions anticipated. If the value is smaller, SSH users may be prevented
from establishing sessions with the server.

AUTHORIZED_KEYS File Format
The SYS$DISK:[<login_dir>.SSH]AUTHORIZED_KEYS file lists the RSA keys that are
permitted for RSA authentication. Each line of the file contains one key (empty lines and lines
starting with a ‘#’ are comments and ignored). Each line consists of the following fields, sepa
by spaces:

Note! Lines in this file are usually several hundred characters long (because of the size of the RSA
key modulus). You do not want to type them in; instead, copy the IDENTITY.PUB file and edit it.
The options (if present) consists of comma-separated option specifications. No spaces are
permitted, except within double quotes. Option names are case insensitive.

Table 4-2 RSA Keys

Key Description

bits Is the length of the key in bits.

comment Not used for anything (but may be convenient for the user to identify the key).

exponent Is a component used to identify and make up the key.

modulus Is a component used to identify and make up the key.

options Optional; its presence is determined by whether the line starts with a number or
not (the option field never starts with a number.)
4-17

Configuring the Secure Shell (SSH) V1 Server

The following option specifications are supported:

Table 4-3 RSA Key File [AUTHORIZED_KEYS]

Option Specification Description

Allowforwardingport=”<port list>” Can be followed by any number of port
numbers, separated by spaces. Remote
forwarding is allowed for those ports whose
number matches one of the patterns.

You can use ‘*’ as a wildcard entry for all
ports.

You can use these formats ‘>x’, ‘<x’, and
‘x_x’ to specify greater than, less than, or
inclusive port range. By default, all port
forwardings are allowed.

The quotes (“ “) are required. The <> show a
list. Do not use the < > in the specification.
For example:

allowforwardingport “2,52,2043”

Allowforwardingto=”<hostname and port list>” Can be followed by any number of hostname
and port number patterns, separated by
spaces. A port number pattern is separated
from a hostname pattern by a colon. For
example: hostname:port

Forwardings from the client are allowed to
those hosts and port pairs whose name and
port number match one of the patterns.

You can use ‘*’ and ‘?’ as wildcards in the
patterns for host names. Normal name
servers are used to map the client’s host into
a fully-qualified host name. If the name
cannot be mapped, its IP address is used as
the hostname.

You can use ‘*’ as a wildcard entry for all
ports.

You can use these formats ‘>x’, ‘<x’, and
‘x_x’ to specify greater than, less than, or
inclusive port range. By default, all port
forwardings are allowed.
4-18

 Configuring the Secure Shell (SSH) V1 Server

command=”command” Specifies the command to be executed
whenever this key is used for authentication.
The user-supplied command (if any) is
ignored. You may include a quote in the
command by surrounding it with a backslash
(\). Use this option to restrict certain RSA
keys to perform just a specific operation. An
example might be a key that permits remote
backups but nothing else. Notice that the
client may specify TCP/IP and/or X11
forwardings unless they are prohibited
explicitly.

Denyforwardingport=”<port list>” Can be followed by any number of port
numbers, separated by spaces. Remote
forwardings are disallowed for those ports
whose number matches one of the patterns.

You can use ‘*’ as a wildcard entry for all
ports.

You can use these formats ‘>x’, ‘<x’, and
‘x_x’ to specify greater than, less than, or
inclusive port range.

Table 4-3 RSA Key File [AUTHORIZED_KEYS] (Continued)

Option Specification Description
4-19

Configuring the Secure Shell (SSH) V1 Server

Denyforwardingto=”<hostname port list>” Can be followed by any number of hostname
and port number patterns, separated by
spaces. A port number pattern is separated
from a hostname by a colon. For example:
hostname:port number pattern

Forwardings from the client are disallowed
to those hosts and port pairs whose name and
port number match one of the patterns.

You can use ‘*’ and ‘?’ as wildcards in the
patterns for host names. Normal name
servers are used to map the client’s host into
a fully-qualified host name. If the name
cannot be mapped, its IP address is used as a
host name.

You can use ‘*’ as a wildcard entry for all
ports.

You can use these formats ‘>x’, ‘<x’, and
‘x_x’ to specify greater than, less than, or
inclusive port range.

from=”pattern-list” In addition to RSA authentication, specifies
that the fully-qualified name of the remote
host must be present in the comma-separated
list of patterns. You can use ‘*’ and ‘?’ as
wildcards.

The list may contain patterns negated by
prefixing them with ‘!’; if the fully-qualified
host name matches a negated pattern, the key
is not accepted.

This option increases security. RSA
authentication by itself does not trust the
network or name servers (but the key).
However, if somebody steals the key, the key
permits login from anywhere in the world.
This option makes using a stolen key more
difficult because the name servers
and/or routers would have to be comprised in
addition to just the key.

Table 4-3 RSA Key File [AUTHORIZED_KEYS] (Continued)

Option Specification Description
4-20

 Configuring the Secure Shell (SSH) V1 Server

RSA Key File Examples

1024 33 12121...312314325 ylo@foo.bar
from="*.emptybits.com,!rose.flowers.com"

1024 35 23...2334 ylo@niksula
command="dir *.txt",no-port-forwarding

1024 33 23...2323 xxxxx.tazm.com
allowforwardingport="localhost:80"

1024 35 23...2334 www@localhost

SSH_KNOWN_HOSTS File Format
The SSH_DIR:SSH_KNOWN_HOSTS and SYS$DISK:[<login_dir>.SSH]KNOWN_HOSTS
files contain host public keys for all known hosts. The global file should be prepared by the
administrator (optional), and the per-user file is maintained automatically; whenever the user
connects to an unknown host its key is added to the per-user file. Each line in these files contains
the following fields: hostnames, bits, exponent, modulus, comment. The fields are separated by
spaces.

Hostnames is a comma-separated list of patterns (’*’ and ’?’ act as wildcards). Each pattern is
matched against the fully-qualified host names (when authenticating a client) or against the user-
supplied name (when authenticating a server). A pattern may be preceded by ’!’ to indicate
negation; if the hostname matches a negated pattern, it is not accepted (by that line) even if it

idle-timeout=time Sets the idle timeout limit to a time in
seconds (s or nothing after the number), in
minutes (m), in hours (h), in days (d), or in
weeks (w). If the connection has been idle
(all channels) for that time, the process is
terminated and the connection is closed.

no-agent-forwarding Forbids authentication agent forwarding
when used for authentication.

no-port-forwarding Forbids TCP/IP forwarding when used for
authentication. Any port forward requests by
the client will return an error. For example,
this might be used in connection with the
command option.

no-X11-forwarding Forbids X11 forwarding when used for
authentication. Any X11 forward requests by
the client will return an error.

Table 4-3 RSA Key File [AUTHORIZED_KEYS] (Continued)

Option Specification Description
4-21

Configuring the Secure Shell (SSH) V1 Server
matched another pattern on the line.

Bits, exponent, and modulus are taken directly from the host key. They can be obtained from
SSH_DIR:SSH_HOST_KEY.PUB. The optional comment field continues to the end of the line,
and is not used. Lines starting with ’#’ and empty lines are ignored as comments. When performing
host authentication, authentication is accepted if any matching line has the proper key.

It is permissible (but not recommended) to have several lines or different host keys for the same
names. This happens when short forms of host names from different domains are put in the file. It is
possible that the files contain conflicting information. Authentication is accepted if valid
information can be found from either file.

Note! The lines in these files are hundreds of characters long. Instead of typing in the host keys,
generate them by a script or by copying SSH_DIR:SSH_HOST_KEY.PUB and adding the host
names at the front.

Example
closenet,closenet.hut.fi,...,130.233.208.41
1024 37 159...93 closenet.hut.fi

Note! HP’s TCP/IP services do not use the traditional UNIX rhosts and hosts.equiv files; it uses a
proprietary format. Therefore, any information added to HP’s files via the “ADD PROXY”
command must also be manually added to the SSH_DIR:RHOSTS and
SSH_DIR:HOSTS.EQUIV files in order for it to be used by SSH for OpenVMS.
4-22

 Configuring the Secure Shell (SSH) V1 Server

FILES

Table 4-4 SSH Files

File Name Description

SSH_DIR:HOSTS.EQUIV Contains host names, one per line. This file is used
during .rhosts authentication. Users on those hosts are
permitted to log in without a password, provided they
have the same username on both machines. The
hostname may also be followed by a username. Such
users are permitted to log in as any user on the remote
machine (except SYSTEM). Additionally, the syntax
+@group can be used to specify netgroups. Negated
entries start with ’-’. If the client host/user is matched in
this file, login is permitted provided the client and
server usernames are the same. Successful RSA host
authentication is required. This file should be world-
readable but writable only by SYSTEM.

It is never a good idea to use usernames in hosts.equiv.
It means the named user(s) can log in as anybody,
which includes accounts that own critical programs
and directories. Using a username grants the user
SYSTEM access. The only valid use for usernames is
in negative entries.

Note! This warning also applies to rshell/rlogin.

SSH_DIR:SHOSTS.EQUIV Processed as SSH_DIR:HOSTS.EQUIV. May be useful
in environments that want to run both
rshell/rlogin and ssh.
4-23

Configuring the Secure Shell (SSH) V1 Server
SSH_DIR:SSH_HOST_KEY Contains the private part of the host key. This file does
not exist when SSH for OpenVMS is installed. The
SSH server starts only with this file. This file must be
created manually using the command: $ MULTINET
SSHKEYGEN/SSH1/HOST. This file should be
owned by SYSTEM, readable only by SYSTEM, and
not accessible to others.

To create a host key with a name that is different than
what SSHKEYGEN creates, do one of the following:

• Generate with
MULTINET SSHKEYGEN/SSH1/HOST and
simply rename the file(s).

• Generate without the /HOST switch and then name
the file(s) whatever you want.

By default, the logical name SSH_DIR points to the
directory where common SSH files are kept, such as
the SSH executables.

SSH_DIR:SSH_HOST_KEY.PUB Contains the public part of the host key. This file
should be world-readable but writable only by
SYSTEM. Its contents should match the private part.
This file is not used for anything; it is only provided
for the convenience of the user so its contents can be
copied to known hosts files.

SSH_DIR:SSH_KNOWN_HOSTS
SYS$DISK:[<login_dir>.SSH]
KNOWN_HOSTS

Checks the public key of the host. These files are
consulted when using rhosts with RSA host
authentication. The key must be listed in one of these
files to be accepted. (The client uses the same files to
verify that the remote host is the one you intended to
connect.) These files should be writable only by
SYSTEM (the owner). SSH_DIR:SSH_KNOWN_HOSTS
should be world-readable, and
[.SSH]KNOWN_HOSTS can, but need not be, world-
readable.

Table 4-4 SSH Files (Continued)

File Name Description
4-24

 Configuring the Secure Shell (SSH) V1 Server

SSH_DIR:SSH_RANDOM_SEED Contains a seed for the random number generator. This
file should only be accessible by system. The file
SSH_RANDOM_SEED. has the potential for
increasing its number of versions.
SSH_RANDOM_SEED. is created in the SSH_DIR:
directory as well as in individual user accounts in the
SYS$LOGIN:[.SSH] directory.

This DCL command limits the number of versions of
this file in the SSH_DIR directory:

$SET FILE VERSION_LIMIT=x
SSH_DIR:SSH_RANDOM_SEED.

This DCL command limits the number of versions of
this file in the user’s SYS$LOGIN:[.SSH]directory.

$SET FILE /VERSION_LIMIT=x -
SYS$LOGIN:[.SSH]SSH_RANDOM_SEED.

or

$CREATE /DIRECTORY /VERSION_LIMIT=x -
SYS$LOGIN:[.SSH]SSH_RANDOM_SEED.

SSH_DIR:SSHD_CONFIG Contains configuration data for SSHD. This file
should be writable by system only, but it is
recommended (though not necessary) that it be world-
readable.

SYS$DISK:[<login_dir>.SSH]
AUTHORIZED_KEYS

Lists the RSA keys that can be used to log into the
user’s account. This file must be readable by system
(which may on some machines imply it being world-
readable). It is recommended that it not be accessible
by others. The format of this file is described above.

SYS$DISK:[<login_dir>.SSH]
SHOSTS

Permits access using SSH only. For SSH, this file is
the same as for .rhosts. However, this file is not used
by rlogin and rshell daemon.

Table 4-4 SSH Files (Continued)

File Name Description
4-25

Configuring the Secure Shell (SSH) V1 Server
SSH Logicals
These logicals are used with the SSH server in the system logical name table.

SYS$LOGIN:RHOSTS This file contains host-username pairs, separated by a
space, one per line. The given user on the
corresponding host is permitted to log in without a
password. The same file is used by rlogin and rshell.
SSH differs from rlogin and rshell in that it requires
RSA host authentication in addition to validating the
hostname retrieved from domain name servers. The
file must be writable only by the user. It is
recommended that it not be accessible by others. It is
possible to use netgroups in the file. Either host or
username may be of the form +@groupname to
specify all hosts or all users in the group.

Table 4-5 SSH Logicals

Logical Description

SSH_DIR Points to the directory where system-specific
configuration information is kept, including
the host key files and the system-specific
server configuration file.

SSH_EXE Points to the directory where common SSH
files are kept, such as the SSH executables.

SSH_LOG Points to the directory where the log files are
kept. Normally, this is
MULTINET_SPECIFIC_ROOT:
[MULTINET.PSCSSH.LOG]

SSH_MAX_SESSIONS Set this to the maximum number of concurrent
SSH sessions you want to allow on the server
system. If SSH_MAX_SESSIONS is not
defined, the default is 9999. Setting
SSH_MAX_SESSIONS to zero (0) will cause
an error. The value must be between 1 and
9999. It is defined through the configuration
procedure.

Table 4-4 SSH Files (Continued)

File Name Description
4-26

 Configuring the Secure Shell (SSH) V1 Server

SSH_TERM_MBX Mailbox used by SSHD_MASTER to receive
termination messages from SSHD daemon
processes. Do not change this logical name.
This is created by the SSHD_MASTER
process.

MULTINET_SSH_ALLOW_EXPIRED_PW Allows logging in to an account when the
account’s password has expired due to
pwdlifetime elapsing. This applies to all users
and circumvents normal VMS expired-
password checking, and therefore should be
used with caution. An entry is made into the
SSH_LOG:SSHD.LOG file when access is
allowed using this logical name.

MULTINET_SSH_ALLOW_PREEXPIRED_PW Allows logging in to an account when the
password has been pre-expired. This applies to
all users and circumvents normal VMS
expired-password checking, and therefore
should be used with caution. An entry is made
into the SSH_LOG:SSHD.LOG file when
access is allowed using this logical name.

MULTINET_SSH_KEYGEN_MIN_PW_LEN Defines the minimum passphrase length when
one is to be set in SSHKEYGEN. If not
defined, defaults to zero.

MULTINET_SSH_PARAMETERS_n These parameters are used to start
SSHD_MASTER. They are parameters set by
@MULTINET:CNFSSH CONFIGURE.

MULTINET_SSH_USE_SYSGEN_LGI If defined, causes SSHD to use the VMS
SYSGEN value of LGI_PWD_TMO to set the
login grace time, overriding anything
specified in the command line or the
configuration file.

Table 4-5 SSH Logicals (Continued)

Logical Description
4-27

Configuring the Secure Shell (SSH) V1 Server
SSH daemon Files
These files are used by or created by SSH when you log into a daemon. These files are not to be
altered in any way.

Table 4-6 SSH daemon Files

File Name Description

SSHD_MASTER.LOG This log file is created by SSHD_MASTER.

SSHD.LOG This log file is created by each SSHD daemon.
4-28

Chapter 5

Configuring the Secure Shell (SSH) V2 Server

This chapter describes how to configure and maintain the SSH for OpenVMS SSH V2 server.

This is the server side of the SSH software that allows secure interactive connections from other
computers in the manner of rlogin/rshell/telnet. The SSH server has been developed to discriminate
between SSH v1 and SSH v2 protocols, so the two protocols can coexist simultaneously on the
same system.

SSH1 and SSH2 Differences
SSH1 and SSH2 are different, and incompatible, protocols. The SSH1 implementation is based on
the V1.5 protocol and 1.3.7 F-Secure code base, and the SSH2 implementation is based on the V2
protocol and the F-Secure 3.1.0 code base. While SSH2 is generally regarded to be more secure
than SSH1, both protocols are offered by the SSH for OpenVMS server, and although they are
incompatible, they may exist simultaneously on an SSH for OpenVMS system. The server front-
end identifies what protocol a client desires to use, and will create an appropriate server for that
client.

Restrictions:
When using SSH to connect to a VMS server, if the VMS account is set up with a secondary
password, SSH does not prompt the user for the secondary password. If the VMS primary password
entered is valid, the user is logged in, bypassing the secondary password.

When using SSH to execute single commands (in the same manner as RSHELL), some keystrokes
like CTRL/Y are ignored. In addition, some interactive programs such as HELP may not function
as expected. This is a restriction of SSH. If this behavior poses a problem, log into the remote
system using SSH in interactive mode to execute the program.
5-1

Configuring the Secure Shell (SSH) V2 Server

may
or
Understanding the SSH for OpenVMS SSH Server
Secure Shell daemon (SSHD) is the daemon program for SSH that listens for connections from
clients. The server program replaces rshell and telnet programs. The server/client programs provide
secure encrypted communications between two untrusted hosts over an insecure network. A new
daemon is created for each incoming connection. These daemons handle key exchange, encryption,
authentication, command execution, and data exchange.

Servers and Clients
An SSH for OpenVMS server is an OpenVMS system that acts as a host for executing interactive
commands or for conducting an interactive session. The server software consists of two pieces of
software (for future reference, “SSHD” will refer to both SSHD_MASTER and SSHD, unless
otherwise specified):

• SSHD_MASTER, recognizes the differences between SSH v1 and SSH v2 and starts the
appropriate server. If the request is for SSH v1, then the SSH v1 server is run; if the request is for
SSH v2, then the SSH v2 server is run.

• SSHD, a copy of which is spawned for each connection instance. SSHD handles all the
interaction with the SSH client.

A client is any system that accesses the server. A client program (SSH) is provided with SSH for
OpenVMS, but any SSH client that uses SSH version 2 protocol may be used to access the server.
Examples of such programs are SSH for OpenVMS, MultiNet SSH2 for OpenVMS, TCPware for
OpenVMS; SecureCRT®, and F-Secure SSH Client for Windows®, MacSSH for Macintosh®
systems, and other SSH programs on UNIX-based systems.

Each host has a key using DSA encryption and is usually 1024 bits long (although, the user
create a different-sized key, if desired). The same key may be used on multiple machines. F
example, each machine in a VMS cluster could use the same key.

When a client connects to the SSHD daemon:

• The client and server together, using the Diffie-Hellman key-exchange method, determine a 256-
bit random number to use as the "session key". This key is used to encrypt all further
communications in the session.

Note that this key may be renegotiated between the client and the server on a periodic basis by
including the RekeyIntervalSeconds keyword in the server configuration file
(SSH2_DIR:SSHD2_CONFIG). This is desirable because during long sessions, the more data
that is exchanged using the same encryption key, the more likely it is that an attacker who is
watching the encrypted traffic could deduce the session key.

• The server informs the client which encryption methods it supports. Currently, AES-128 (the
default), Twofish, Blowfish, CAST-128, DES, 3DES, and ARCFOUR are supported by the SSH
for OpenVMS system.

• The client selects the encryption algorithm from those offered by the server.

• The client and the server then enter a user authentication dialog. The server informs the client
which authentication methods it supports, and the client then attempts to authenticate the user by
using some or all of the authentication methods. The following authentication algorithms are
5-2

 Configuring the Secure Shell (SSH) V2 Server

this

supported:

– public-key (DSA keys)
– hostbased
– password

System security is not improved unless the RLOGIN, RSHELL, and TELNET services are
disabled.

If the client authenticates itself successfully, a dialog is entered for preparing the session. At
time the client may request things like:

• forwarding X11 connections

• forwarding TCP/IP connections

• forwarding the authentication agent connection over the secure channel

Finally, the client either requests an interactive session or execution of a command. The client and
the server enter session mode. In this mode, either the client or the server may send data at any
time, and such data is forwarded to/from the virtual terminal or command on the server side, and
the user terminal in the client side. When the user program terminates and all forwarded X11 and
other connections have been closed, the server sends command exit status to the client, and both
sides exit.

Break-In and Intrusion Detection
Care must be exercised when configuring the SSH clients and server to minimize problems due to
intrusion records created by OpenVMS security auditing. The SSH user should consult the system
manager to determine the authentication methods offered by the SSH server. The client should then
be configured to not attempt any authentication method that is not offered by the server.

If a client attempts authentication methods not offered by the server, the OpenVMS security
auditing system may log several intrusion records for each attempt to create a session to that server.
The result being that the user could be locked out and prevented from accessing the server system
without intervention from the server’s system manager.

The authentication methods to be offered by the server are determined by the configuration
keywords AllowedAuthentications and RequiredAuthentications. The number of intrusion records
to be logged for any attempted SSH session is determined by the StrictIntrusionLogging
configuration keyword.

When StrictIntrusionLogging is set to YES (the default), each method that is tried and fails causes
an intrusion record to be logged. The following rules apply:

• When HostBased or PublicKey authentications are attempted and fail, one intrusion record is
logged for each failed method.

• When password authentication is attempted, one intrusion record is logged for each failed
password.
5-3

Configuring the Secure Shell (SSH) V2 Server
Example 1:

The server is set up to allow HostBased and password authentication; also, up to three password
attempts are allowed. If all methods fail, four intrusion records are logged:

1 for the failed HostBased
3 for the failed password attempts, one per attempt

When StrictIntrusionLogging is set to NO, it has the effect of relaxing the number of intrusions
logged. Overall failure of all authentication methods simply counts as a single failure, except for
password authentication. The following rules apply:

• When password authentication is attempted, one intrusion record is logged for each failed
password.

• When any of HostBased or PublicKey authentication fails, and password authentication is not
attempted, exactly one intrusion record is logged, as opposed to one for each failed method.

• When any of HostBased or PublicKey authentication fails, but password authentication is
attempted and succeeds, the only intrusion record(s) logged is one for each failed password
attempt.

Example 2:

The server is set up to allow HostBased and password authentication; also, up to three password
attempts are allowed. If all methods fail, three intrusion records are logged:

0 for the failed HostBased
3 for the failed password attempts, one per attempt

Example 3:

The server is set up to allow HostBased and password authentication; also, up to three password
attempts are allowed. HostBased and RSA fail, but password authentication is successful after 1
failed password. Therefore, one intrusion record is logged:

0 for the failed HostBased
1 for the failed password attempt

Example 4:

The server is set up to allow HostBased and PublicKey authentication, but not password
authentication. If all methods fail, one intrusion record is logged.

Example 5:

The server is set up to allow HostBased and PublicKey authentication, but not password
authentication. HostBased authentication fails, but PublicKey succeeds. No intrusion records are
logged.
5-4

 Configuring the Secure Shell (SSH) V2 Server

Configuring SSHD Master
The SSHD Master is configured via CNFSSH. See Chapter 3 of the SSH for OpenVMS
Administration and User’s Guide for details on using CNFSSH to configure SSH.

Note! The only supported methods for starting SSH are to use the
@SYS$STARTUP:PSCSSH$STARTUP command if SSH isn’t running, or to use the
SSHCTRL RESTART command if SSH is currently running.

SSH2 Configuration File
SSHD reads configuration data from its configuration file. By default, this file is
SSH2_DIR:SSHD2_CONFIG. However, it may be modified by setting the ssh2-config-file
parameter with CNFSSH. The file contains keyword value pairs, one per line. Lines starting with #
and empty lines are interpreted as comments. The following keywords are possible. Keywords are
case insensitive.

Note! HP’s TCP/IP services do not use the traditional UNIX rhosts and hosts.equiv files; it uses a
proprietary format. Therefore, any information added to HP’s files via the “ADD PROXY”
command must also be manually added to the SSH_DIR:RHOSTS and
SSH_DIR:HOSTS.EQUIV files in order for it to be used by SSH for OpenVMS.

Table 5-1 SSH2 Configuration File Keywords [SSHD2_CONFIG]

Keyword Value Default Description

AllowedAuthentications List Publickey,
Password

Permitted
techniques

AllowGroups List Access control by
UAF rightslist
entries

AllowHosts Host list Access control by
hostname

AllowShosts Host list Access control by
hostname

AllowTcpForwarding Y/N Y Enable TCP port
forwarding

AllowTcpForwardingForUsers User list Per-User
forwarding

AllowTcpForwardingForGroups Rights list Per-Rightslist ID
forwarding

AllowUsers User list Access control by
username
5-5

Configuring the Secure Shell (SSH) V2 Server
AllowX11Forwarding Y/N Y Enable X11
forwarding

AuthorizationFile Filename Authorization Authorization file
for publickey
authentication.

BannerMessageFile Filename
SYS$ANNOUNCE

Message sent to the
client before
authentication
begins

CheckMail Y/N Y Display
information about
new mail messages
when logging in

Ciphers Cipher list Encryption ciphers
offered

ClientHostnameDNS Must match the
one in DNS

DenyGroups Rights list Deny access for
UAF rightslist
identifiers

DenyHosts Host list Deny access for
hosts

DenySHosts Host list Deny access for
hosts

DenyTcpForwardingForUsers User list Forbid forwarding
for listed users

DenyTcpForwardingForGroups Rights list Forbid forwarding
for listed rightslist
names

DenyUsers User list Access control by
username

FascistLogging Y/N Y Verbose logging

Table 5-1 SSH2 Configuration File Keywords [SSHD2_CONFIG] (Continued)

Keyword Value Default Description
5-6

 Configuring the Secure Shell (SSH) V2 Server

ForwardAgent Y/N Y Enable agent
forwarding

ForwardX11 Y/N Y Enable X11
forwarding

HostbasedAuthForceClient
HostnameDNSMatch

 Y/N N Host name given
by client

Hostkeyfile Filename Hostkey Host key filename

IdentityFile Filename Identification Identity filename

IdleTimeout Time 0 = none Set idle timeout (in
seconds)

IgnoreRhosts Y/N N Ignore local rhosts

IgnoreRootRhosts Y/N Y Ignore system
rhosts

KeepAlive Y/N Y Send keepalives

ListenAddress IP address 0.0.0.0 Listen on given
interface

Macs Algorithm Select MAC
(Message
Authentication
Code) algorithm

MaxBroadcastsPerSecond #broadcasts 0 Listen for UDP
broadcasts

NoDelay Y/N N Enable Nagel
Algorithm

PasswordGuesses #guesses 3 Limit number of
password tries to
specified number

PermitEmptyPasswords Y/N N Permit empty
(blank) passwords

PermitRootLogin Y/N N SYSTEM can log
in

Table 5-1 SSH2 Configuration File Keywords [SSHD2_CONFIG] (Continued)

Keyword Value Default Description
5-7

Configuring the Secure Shell (SSH) V2 Server
PrintMotd Y/N Y Display
SYS$WELCOME
when logging in

PublicHostKeyFile Filename Hostkey.pub Host key file
location

QuietMode Y/N N Quiet mode

RandomSeedFile Filename Random_seed Random seed file

RekeyIntervalSeconds #seconds 3600 Frequency of
rekeying

RequiredAuthentication Authentication
list

Overrides Allowed
Authentications
client must support

RequireReverseMapping Y/N N Remote IP address
must map to
hostname

RSAAuthentication Y/N Y Enable RSA
authentication

StrictIntrusionLogging Y/N Y Determine how
intrusion records
are created by
failed
authentication
attempts

StrictModes Y/N N Strict checking for
directory and file
protection

SyslogFacility Syslog level “AUTH” Syslog log facility

UserConfigDirectory Directory SYS$LOGIN: Location of user
SSH2 directories

UserKnownHosts Y/N Y Respect user
[.ssh2] known
hosts keys

VerboseMode Y/N N Verbose mode

Table 5-1 SSH2 Configuration File Keywords [SSHD2_CONFIG] (Continued)

Keyword Value Default Description
5-8

 Configuring the Secure Shell (SSH) V2 Server

The keywords MACs and Ciphers have discrete values, plus there are values that actually denote a
grouping of 2 or more of the discrete values. Each of these values may be put in the configuration
file (SSH2_DIR:SSHD2_CONFIG).

X11Forwarding Y/N Y Enable X11
forwarding

Table 5-2 MAC and Cipher Discrete Values

MACs discrete values:

aes, aes128-cbc, aes256-cbc, aes192-cbc, aes128-cbc, hmac-sha1, hmac-sha1-96,
hmac-md5, hmac-md5-96, hmac-ripemd160,
hmac-ripemd160-96, sha1-8, sha1, md5-8, md5, ripemd160-8, ripemd160, none

group ANYMAC consists of:

hmac-sha1, hmac-sha1-96, hmac-md5, hmac-md5-96, hmac-ripemd160,
hmac-ripemd160-96, sha1-8, sha1, md5-8, md5, ripemd160-8, ripemd160

group ANY consists of:

hmac-sha1, hmac-sha1-96, hmac-md5, hmac-md5-96, hmac-ripemd160,
hmac-ripemd160-96, sha1-8, sha1, md5-8, md5, ripemd160-8, ripemd160, none

group ANYSTD consists of:

hmac-md5, hmac-md5-96, hmac-sha1, hmac-sha1-96, none

group ANYSTDMAC consists of:

hmac-md5, hmac-md5-96, hmac-sha1, hmac-sha1-96

Ciphers discrete values:

aes, aes256-cbc, aes192-cbc, aes128-cbc, des, 3des, twofish, blowfish, cast, 3des-
cbc, blowfish-cbc, twofish-cbc, arcfour, cast128-cbc, 3des-ecb, 3des-cfb, 3des-
ofb, cast128-ecb, cast128-cfb, cast128-ofb, cast128-12-ecb, cast128-12-cbc,
cast128-12-cfb, cast128-12-ofb, blowfish-ecb, blowfish-cfb, blowfish-ofb, des-
ecb, des-cbc, des-cfb, des-ofb, twofish-ecb, twofish-cfb, twofish-ofb, none

group ANYSTDCIPHER consists of:

aes, aes128-cbc, 3des-cbc, cast128-cbc, blowfish-cbc, twofish-cbc, arcfour, 3des,
twofish, blowfish, cast

Table 5-1 SSH2 Configuration File Keywords [SSHD2_CONFIG] (Continued)

Keyword Value Default Description
5-9

Configuring the Secure Shell (SSH) V2 Server
A discrete value or a group identifier may be used with MACS and CIPHERS. For example, in the
configuration file, the following examples could be used:

Aiases may be used for some standard ciphers:

group ANY consists of:

aes, aes256-cbc, aes192-cbc, aes128-cbc, des, 3des, twofish, blowfish, cast, 3des-
cbc, blowfish-cbc, twofish-cbc, arcfour, cast128-cbc, 3des-ecb, 3des-cfb, 3des-
ofb, cast128-ecb, cast128-cfb, cast128-ofb, cast128-12-ecb, cast128-12-cbc,
cast128-12-cfb, cast128-12-ofb, blowfish-ecb, blowfish-cfb, blowfish-ofb, des-
ecb, des-cbc, des-cfb, des-ofb, twofish-ecb, twofish-cfb, twofish-ofb, none

group ANYCIPHER consists of:

aes, aes256-cbc, aes192-cbc, aes128-cbc, des, 3des, twofish, blowfish, cast, 3des-
cbc, blowfish-cbc, twofish-cbc, arcfour, cast128-cbc, 3des-ecb, 3des-cfb, 3des-
ofb, cast128-ecb, cast128-cfb, cast128-ofb, cast128-12-ecb, cast128-12-cbc,
cast128-12-cfb, cast128-12-ofb, blowfish-ecb, blowfish-cfb, blowfish-ofb, des-
ecb, des-cbc, des-cfb, des-ofb, twofish-ecb, twofish-cfb, twofish-ofb

group ANYSTD consists of:

aes, aes256-cbc, aes192-cbc, aes128-cbc, 3des-cbc, cast128-cbc, blowfish-cbc,
twofish-cbc, arcfour, des, 3des, twofish, blowfish, cast, none

Ciphers ANYCIPHER

Ciphers cast, des, twofish

MACs ANYMAC

MACs hmac-sha1

Alias Value

aes aes128-cbc

des des-cbc

3des 3des-cbc

cast cast128-cbc

twofish twofish-cbc

blowfish blowfish-cbc

Table 5-2 MAC and Cipher Discrete Values (Continued)
5-10

 Configuring the Secure Shell (SSH) V2 Server

t

Starting the SSH Server for the First Time
Follow these instructions to configure the SSH server. If SSH isn’t currently running, you mus
define the MULTINET logicals by using:

$ @SYS$STARTUP:PSCSSH$STARTUP LOGICALS

1 Use CNFSSH to enable the SSH2 server. For more information, see Chapter 3 of the SSH for
OpenVMS Administration and User’s Guide.

2 Use SSHKEYGEN /SSH2/HOST to generate an SSH2 key and to create the server key in the
MULTINET_SSH2_HOSTKEY_DIR directory if it has not previously been created as part of
the CNFSSH configuration:

$ DEFINE MULTINET_SSH_HOSTKEY_DIR -
_$ MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH2.HOSTKEYS]

$ MULTINET SSHKEYGEN /SSH2/HOST
Generating 1024-bit dsa key pair
 8 .oOo.oOoo.oO
Key generated.
1024-bit dsa, lillies@flower.plants.com, Mon Aug 06 2002 09:19:47
Private key saved to multinet_ssh2_hostkey_dir:hostkey.
Public key saved to multinet_ssh2_hostkey_dir:hostkey.pub

3 Edit the configuration file at SSH2_DIR:SSHD2_CONFIG (if you wish to change the default
settings). This default configuration is the same as contained in the file
MULTINET:SSHD2_CONFIG.TEMPLATE

Note! As delivered, the template file provides a reasonably secure SSH environment. However,
Process Software recommends this file be examined and modified appropriately to reflect the
security policies of your organization.

4 Start SSH. This creates the SSH server process and defines the SSH logical names.

$ @SYS$STARTUP:PSCSSH$STARTUP
$ SHOW PROCESS "SSHD Master"

arcfour arcfour

Alias Value
5-11

Configuring the Secure Shell (SSH) V2 Server
7-JUN-2002 09:03:06.42 User: SYSTEM Process ID: 00000057
 Node: PANTHR Process name: "SSHD Master"

Terminal:
User Identifier: [SYSTEM]
Base priority: 4
Default file spec: Not available
Number of Kthreads: 1

Devices allocated: BG1:
 BG2:

$ SHOW LOGICAL/SYSTEM *SSH*

 "MULTINET_SSH2_HOSTKEY_DIR" ="MULTINET_SPECIFIC_ROOT:
 [MULTINET.PSCSSH.SSH2.HOSTKEYS]"
 "MULTINET_SSH2_KNOWNHOSTS_DIR"=
 "MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH2.KNOWNHOSTS]"

 "MULTINET_SSH_ALLOW_EXPIRED_PW"="1"
 "MULTINET_SSH_ALLOW_PREEXPIRED_PW"="1"
 "MULTINET_SSH_DISPLAY_SYS$ANNOUNCE"="1"
 "MULTINET_SSH_ENABLE_SSH1_CONNECTIONS"="1"
 "MULTINET_SSH_ENABLE_SSH2_CONNECTIONS"="1"
 "MULTINET_SSH_LOG_MBX" = "MBA37"
 "MULTINET_SSH_PARAMETERS_0"="/BITS=768/VERBOSE/QUIET/PORT=22"
 "MULTINET_SSH_PARAMETERS_1"="/KEY_GEN_TIME=3600"
 "MULTINET_SSH_PARAMETERS_2"=""
 "MULTINET_SSH_PARAMETERS_3" =""
 "SSH2_DIR"=MULTINET__SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH2]"
 "SSH_DIR"="MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH]"
 "SSH_EXE"= MULTINET_COMMON_ROOT:[MULTINET.PSCSSH]"
 "SSH_LOG"= MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH.LOG"
 "SSH_MAX_SESSIONS"="100"

 "SSH_TERM_MBX"="MBA36:"

5-12

 Configuring the Secure Shell (SSH) V2 Server

Changing SSH2 Configuration File After Enabling SSH2

$ SSHCTRL RESTART

Note! When issuing the "RESTART" command for SSH, all active SSH server sessions are
terminated. Active client sessions are not affected.

Connection and Login Process
To create a session, SSHD does the following:

1 SSHD_MASTER sees the connection attempt. It creates an SSHD process, passing the operating
parameters to it. SSHD performs validation for the user.

2 Assuming the login is successful, SSHD creates a pseudo terminal for the user (an FTAnn:
device). This device is owned by the user attempting to log in.

3 SSHD creates an interactive process on the pseudo terminal, using the username, priority, and
privileges of the user who is attempting to log in. If a command was specified, it is executed and
the session is terminated.

4 SSH generates the file SSHD.LOG for each connection to the SSH server. Many connections
result in many log files. Instead of purging the files on a regular basis, use the following DCL
command to limit the number of versions:

$ SET FILE /VERSION_LIMIT=x SSH_LOG:SSHD.LOG

Note! The value for /VERSION_LIMIT must not be smaller than the maximum number of
simultaneous SSH sessions anticipated. If the value is smaller, SSH users may be prevented
from establishing sessions with the server.

SSH Files

Note! HP’s TCP/IP services do not use the traditional UNIX rhosts and hosts.equiv files; it uses a
proprietary format. Therefore, any information added to HP’s files via the “ADD PROXY”
command must also be manually added to the SSH_DIR:RHOSTS and
SSH_DIR:HOSTS.EQUIV files in order for it to be used by SSH for OpenVMS.
5-13

Configuring the Secure Shell (SSH) V2 Server
The following table provides descriptions of the various SSH files:

Table 5-3 SSH Files

File Description

SSH_DIR:HOSTS.EQUIV Contains host names, one per line. This file is
used during rhosts authentication. Users on
those hosts are permitted to log in without a
password, provided they have the same
username on both machines. The hostname
may also be followed by a username. Such
users are permitted to log in as any user on the
remote machine (except SYSTEM).
Additionally, the syntax +@group can be used
to specify netgroups. Negated entries start
with dash (-). If the client host/user is matched
in this file, login is permitted, provided the
client and server usernames are the same.
Successful RSA host authentication is
required. This file should be world-readable
but writable only by SYSTEM.

It is never a good idea to use usernames in
hosts.equiv. It means the named user(s) can
log in as anybody, which includes accounts
that own critical programs and directories.
Using a username grants the user SYSTEM
access. The only valid use for usernames is in
negative entries.

Note! This warning also applies to rshell/
rlogin.

SSH_DIR:SHOSTS:EQUIV Processed as SSH_DIR:HOSTS.EQUIV. May
be useful in environments that want to run
both rshell/rlogin and ssh.
5-14

 Configuring the Secure Shell (SSH) V2 Server

MULTINET_SSH2_HOSTKEY_DIR:
HOSTKEY

Contains the private part of the host key. This
file does not exist when SSH for OpenVMS is
first installed. The SSH server requires this
file to exist to start. This file must be created
manually using the command:

$ MULTINET SSHKEYGEN /SSH2 /
HOST

This file should be owned by SYSTEM,
readable only by SYSTEM, and not accessible
to others.

To create a host key with a name that is
different than what SSHKEYGEN creates, do
one of the following:

• Generate with SSHKEYGEN /SSH2 /
HOST and simply rename the file(s).

• Generate without the /HOST switch
and then name the file(s) whatever you
want.

By default, the logical name SSH2_DIR
points to the
MULTINET_SPECIFIC_ROOT:[MULTINET
.PSCSSH.SSH2] directory.

Refer to Chapter 6 of the SSH for OpenVMS
Administration and User’s Guide, for more
details about SSHKEYGEN.

MULTINET_SSH2_HOSTKEY_DIR:
HOSTKEY.PUB

Contains the public part of the host key. This
file should be world-readable but writable
only by SYSTEM. Its contents should match
the private part. This file is not used for
anything; it is only provided for the
convenience of the user so its contents can be
copied to known hosts files

SSH2_DIR:RANDOM_SEED Seeds the random number generator. This file
should not be readable by anyone but
SYSTEM.

SYS$LOGIN:[.SSH2]RANDOM_SEED Seeds the random number generator. This file
should not be readable by anyone but the user.

Table 5-3 SSH Files

File Description
5-15

Configuring the Secure Shell (SSH) V2 Server
SYS$LOGIN:RHOSTS This file contains host-username pairs,
separated by a space, one per line. The given
user on the corresponding host is permitted to
log in without a password. The same file is
used by rlogin and rshell. SSH2 differs from
rlogin and rshell in that it requires RSA host
authentication in addition to validating the
hostname retrieved from domain name servers
(unless compiled with the -with-rhosts
configuration option). The file must be
writable only by the user. It is recommended
that it not be accessible by others. It is possible
to use netgroups in the file. Either host or
username may be of the form +@groupname
to specify all hosts or all users in the group.

SYS$LOGIN:[.SSH2]AUTHORIZATION This file contains information on how the
server verifies the identity of a user.

SYS$LOGIN:[.SSH2.KNOWNHOSTS]xxxxy
yyy.pub

These are the public host keys of hosts that a
user wants to log in from using "hostbased"
authentication (equivalent to the SSH1’s
"RhostsRSAAuthentication"). Also, a user
must set up his/her individual .SHOSTS or
.RHOSTS file. If the username is the same in
both hosts, it is adequate to put the public host
key in the
MULTINET_SSH2_KNOWNHOSTS_DIR
directory and add the host’s name to the
system-wide SHOSTS.EQUIV or
RHOSTS.EQUIV file.

xxxx is the hostname (FQDN) and yyyy
denotes the public key algorithm of the key
("ssh-dss" or "ssh-rsa").

key ("ssh-dss" or "ssh-rsa").

For example flower.plants.com’s host key
algorithm is "ssh-dss". The hostkey would
then be "flower_plants_com_ssh-dss.pub" in the
[.SSH2.KNOWNHOSTS] directory.

Table 5-3 SSH Files

File Description
5-16

 Configuring the Secure Shell (SSH) V2 Server

SSH2 AUTHORIZATION File Format
The Authorization file contains information on how the server verifies the identity of a user. This
file has the same general syntax as the SSH2 configuration files, as shown in the following table.

Table 5-4 SSH2 AUTHORIZATION Keywords

SSH2 Logicals
These logicals are used with the SSH server in the system logical name table.

Keyword Description

KEY The filename of a public key in the [.SSH2] directory in the user’s SYS$LOGIN
directory. This key is used for identification when contacting the host. If there
are multiple KEY lines, all are acceptable for login.

COMMAND This keyword, if used, must follow the KEY keyword above. This is used to
specify a "forced command" that executes on the server side instead of
anything else when the user is authenticated. This option might be useful for
restricting certain public keys to perform certain operations.

Table 5-5 SSH2 Logicals

Logical Description

SSH_DIR Points to the directory where the master
server log file is kept. Normally, this is
MULTINET_SPECIFIC_ROOT:
[MULTINET.PSCSSH.SSH].

SSH_EXE Points to the directory where common
SSH files are kept. Normally, this is

MULTINET_COMMON_ROOT:
[MULTINET.PSCSSH].

SSH_LOG Points to the directory where the log files
are kept. Normally, this is
MULTINET_SPECIFIC_ROOT:
[MULTINET.PSCSSH.LOG]
5-17

Configuring the Secure Shell (SSH) V2 Server

MULTINET_SSH_MAX_SESSIONS Set this to the maximum number of
concurrent SSH sessions you want to
allow on the server system. If
MULTINET_SSH_MAX_SESSIONS is not
defined, the default is 1000. Setting
MULTINET_SSH_MAX_SESSIONS to zero
(0) will cause an error. The value must be
between 1 and 1000.

SSH_TERM_MBX Mailbox used by SSHD_MASTER to
receive termination messages from SSHD
daemon processes. Do not change this
logical name. This is created by the
SSHD_MASTER process.

MULTINET_SSH_PARAMETERS_n These values are set by MultiNet and must
not be modified by the user.

MULTINET_SSH_ENABLE_SSH2_CONNECTIONS Enables SSHD Master to accept SSH V2
sessions.

MULTINET_SSH2_HOSTKEY_DIR Directory containing the host keys for the
SSH V2 server. Normally set to
MULTINET_SPECIFIC_ROOT:
[MULTINET.SSH2.HOSTKEYS]

MULTINET_SSH2_KNOWNHOSTS_DIR Directory containing client’s public host
keys used for hostbased authentication.
Normally set to
MULTINET_SPECIFIC_ROOT:
[MULTINET.PSCSSH.SSH2.
KNOWNHOSTS]

SSH2_DIR Contains all SSH V2-specific files, such as
configuration files. Normally set to
MULTINET_SPECIFIC_ROOT:
[MULTINET.PSCSSH.SSH2].

Table 5-5 SSH2 Logicals (Continued)

Logical Description
5-18

 Configuring the Secure Shell (SSH) V2 Server

SSH daemon Files
These files are used by or created by SSH when you log into a daemon. These files are not to be
altered in any way.

Table 5-6 SSH daemon Files

File Description

SSH_LOG:SSHD.LOG This log file is created by each SSHD
daemon.

SSHD_MASTER.LOG This log file is created by
SSHD_MASTER.
5-19

Configuring the Secure Shell (SSH) V2 Server
5-20

’s

Chapter 6

Accessing Remote Systems with the Secure
Shell (SSH) Utilities

The SSH implementation for SSH for OpenVMS provides the client software for allowing secure
interactive connections to other computers in the manner of rlogin/rshell/telnet.

The following topics describe how to configure, maintain, and use the following SSH for
OpenVMS clients:

• Secure Shell Client (remote login program)

• SSHKEYGEN

• SSHAgent (authentication agent)

• SSHADD

SSH Protocol Support
The SSH client software supports both the SSH1 and SSH2 protocols. SSH1 and SSH2 are
different, and incompatible protocols. The SSH1 implementation is based on the V1.5 protocol and
1.3.7 F-Secure code base, and the SSH2 implementation is based on the V2 protocol and the F-
Secure 3.1.0 code base. While SSH2 is generally regarded to be more secure than SSH1, both
protocols are offered by SSH for OpenVMS, and although they are incompatible, they may exist
simultaneously on server systems, including SSH for OpenVMS servers. The SSH client identifies
the protocol(s) offered by any given server. If both SSH2 and SSH1 protocols are offered, the client
will always use SSH2. Otherwise, the client will use the correct protocol based on the server
capability.
6-1

Accessing Remote Systems with the Secure Shell (SSH) Utilities
Secure Shell Client (remote login program)
SSH (Secure Shell) is a program for logging into and executing commands on a remote system. It
replaces rlogin, rsh, and telnet, and provides secure encrypted communications between two
untrusted hosts over an insecure network. X11 connections and arbitrary TCP/IP ports can be
forwarded over the secure channel. SSH connects and logs into the specified hostname. The user
must prove his/her identity to the remote system using one of several methods.

Initial Server System Authentication
When an initial connection is made from the client system to the server system, a preliminary
authentication of the server is made by the client. To accomplish this, the server system sends its
public key to the client system.

SSH maintains a directory containing the public keys for all hosts to which it has successfully
connected. For each user, this is the [.SSH2.HOSTKEYS] directory off the individual

SYS$LOGIN directory1. In addition, a system-wide directory of known public keys exists in the
system directory pointed to by the logical name MULTINET_SSH2_HOSTKEY_DIR, and this
may be populated by the system manager. Both directories are searched as needed when
establishing a connection between systems. Any new host public keys are added to the user’s
HOSTKEYS directory. If a host’s identification changes, SSH warns about this and disables
password authentication to prevent a trojan horse from getting the user’s password. Another
purpose of this mechanism is to prevent man-in-the-middle attacks that could be used to
circumvent the encryption. The SSH configuration option StrictHostKeyChecking can be used to
prevent logins to a system whose host key is not known or has changed.

Hostbased Authentication
Hostbased authentication relies on two things: the existence of the user’s system and username in
either SSH_DIR:HOSTS.EQUIV or in the individual user’s SYS$LOGIN:.RHOSTS or
SYS$LOGIN:.SHOSTS file; and the server system having prior knowledge of the client system’s
public host key.

Note! HP’s TCP/IP services do not use the traditional UNIX rhosts and hosts.equiv files; it uses a
proprietary format. Therefore, any information added to HP’s files via the “ADD PROXY”
command must also be manually added to the SSH_DIR:RHOSTS and
SSH_DIR:HOSTS.EQUIV files in order for it to be used by SSH for OpenVMS.

• For SSH2
 When a user logs in:

1 The server checks the SSH_DIR:HOSTS.EQUIV file, and the user’s SYS$LOGIN:.RHOSTS
and SYS$LOGIN:.SHOSTS files for a match for both the system and username. Wildcards are
not permitted.

1. In this chapter, the [.SSH] subdirectory in the user’s login directory displays as SYS$LOGIN:[.SSH]
[.SSH2] displays as SYS$LOGIN:[.SSH2]
6-2

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

 or

key

he

st

re
ossible

2 The server checks to see if it knows of the client’s public host key (SSH2_DIR:HOSTKEY.PUB
on VMS client systems) in either the user’s SYS$LOGIN:[SSH2.KNOWNHOSTS] directory
in the system-wide directory pointed to by the MULTINET_SSH2_KNOWNHOSTS_DIR
logical name. The key file is named <FQDN>_<algorithm>.PUB. For example, if the client
system is “foo.bar.com” and its key uses the DSS algorithm, the file that would contain its
on the server would be “FOO_BAR_COM_SSH-DSS.PUB”. This key file must exist on the
server system before attempting hostbased authentication.

3 If the key file is found by the server, the client sends its digitally-signed public host key to t
server. The server will check the signature for validity.

• For SSH1
This form of authentication alone is not allowed by the server because it is not secure. The second
(and primary) authentication method is the RHOSTS or HOSTS.EQUIV method combined with
RSA-based host authentication. It means that if the login would be permitted by .RHOSTS,
.SHOSTS, SSH_DIR:HOSTS.EQUIV, or SSH_DIR:SHOSTS.EQUIV file, and if the client’s ho
key can be verified (see SYS$LOGIN:[.SSH]KNOWN_HOSTS and
SSH_DIR:SSH_KNOWN_HOSTS in the FILES section), only then is login permitted. This
authentication method closes security holes due to IP spoofing, DNS spoofing, and routing
spoofing.

Note! To the administrator: SSH_DIR:HOSTS.EQUIV,.RHOSTS, and the rlogin/rshell protocol are
inherently insecure and should be disabled if security is desired.

Publickey Authentication
The SSH client supports DSA-based authentication for SSH2 sessions, and RSA-based
authentication for SSH1 sessions. The scheme is based on public-key cryptography. There a
cryptosystems where encryption and decryption are done using separate keys, and it is not p
to derive the decryption key from the encryption key.

• For SSH1
SSH supports RSA-based authentication. The scheme is based on public-key cryptography. There
are cryptosystems where encryption and decryption are done using separate keys, and it is not
possible to derive the decryption key from the encryption key.

RSA is one such system. The idea is that each user creates a public/private key pair for
authentication purposes. The server knows the public key
(SYS$LOGIN:[.SSH]AUTHORIZED_KEYS lists the public keys permitted for log in), and only
the user knows the private key.

When the user logs in:

1 The SSH client program tells the server the key pair it would like to use for authentication.

2 The server checks if this key pair is permitted.

If it is permitted, the server sends the SSH client program running on behalf of the user a
challenge (a random number) encrypted by the user’s public key. The challenge can only be
decrypted using the proper private key.
6-3

Accessing Remote Systems with the Secure Shell (SSH) Utilities

f the
e
ine.

e with

igital
the

network
her
 remote
.

original
3 The user’s client then decrypts the challenge using the private key, proving that he/she knows the
private key but without disclosing it to the server.

4 SSH implements the RSA authentication protocol automatically.

The Key Identity files are created with SSHKEYGEN. To create the RSA key pair files with SSH
for OpenVMS:

1 Run SSHKEYGEN to create the RSA key pair: IDENTITY and IDENTITY.PUB.

Both of these files are stored in the user’s SYS$LOGIN:[.SSH]directory. IDENTITY.; is the
private key; IDENTITY.PUB is the public key.

Once you have created your identity files:

1 Transfer the IDENTITY.PUB file to the remote machine.

2 Update the AUTHORIZED_KEYS file on the remote machine by appending the contents o
public key file to the SYS$LOGIN:[.SSH]AUTHORIZED_KEYS file on the remote host. Th
format of the AUTHORIZED_KEYS file requires that each entry consists of a single long l

After this, the user can log in without giving the password. RSA authentication is much more
secure than rhosts authentication. The most convenient way to use RSA authentication may b
an authentication agent. See Publickey Authentication for more information.

• For SSH2
When the user logs in:

1 The client reads possible keys to be used for authentication from its IDENTIFICATION file.
Note that this file does not contain the actual keys; rather, it contains the name of the key files.

2 The client sends to the server its list of keys.

3 The server compares each key that it received to see if it can match this key with one of those
specified in the AUTHORIZATION file.

4 The server tells the client the key that was accepted. The client then “signs” the key with a d
signature that only the server with the proper key could verify, and sends the signature to
server.

5 The server verifies the signature.

Password authentication
The password is sent to the remote host for checking. The password cannot be seen on the
because all communications are encrypted. When the server accepts the user's identity it eit
executes the given command or logs into the system and gives the user a normal shell on the
system. All communication with the remote command or shell will be encrypted automatically

Expired Passwords
The SSH client supports the changing of expired passwords for SSH2 sessions only. When a
password expires that may be changed by the user, the user will be prompted to re-enter the
password, then to enter a new password twice.
6-4

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

ble
the
follow a

 user
e exit

The new password is validated against the password history maintained by VMS. It is also
validated against the VMS system dictionary of restricted passwords.

Note! If a user is required to use system-generated passwords, either because the GENPWD flag is
set in SYSUAF or because the user has exceeded the limits on the number of password history
entries, the user will not be allowed to log in via SSH. This is because the protocol does not
allow for this VMS-specific feature. In these cases, the user must either log in via Telnet and
reset the password that way, or the user must contact the system manager to reset the
password.

The SSH v1 protocol does not provide a method for changing an expired VMS password. When an
expired password is encountered by the SSH1 server, it will do one of two things.

1 If the logical name MULTINET_SSH_ALLOW_EXPIRED_PW is defined for allowing access
for passwords that have exceeded the UAF value for PWDLIFETIME, or if the logical name
MULTINET_SSH_ALLOW_PREEXPIRED_PW is defined for allowing access for users that
have a pre-expired password, the server will allow the user to log in. In the logical name table
LNM$SSH_LOGICALS, the logical name MULTINET_SSH_pid_PWDEXP (where pid is the
process ID for the user process) will be defined. The system manager can look for this logical to
be defined, and if so, take action such as executing the DCL SET PASSWORD command.

2 If the appropriate logical is not set as described above, the user will be denied access to the
system. In that case, the user must log in interactively via another mechanism such as telnet and
change the password, or the system manager must reset the password.

Break-in and Intrusion Detection
Care must be exercised when configuring the client to minimize problems due to intrusion records
created by OpenVMS security auditing. The SSH user should consult the system manager to
determine the authentication methods offered by the SSH server. Examples of such authentication
methods include HostBased, PublicKey, and Password. The client should be configured to not
attempt any authentication method that is not offered by the server.

If a client attempts authentication methods not offered by the server, the OpenVMS security
auditing system may log several intrusion records for each attempt to create a session to that server.
The result being that the user could be locked out and prevented from accessing the server system
without intervention from the server’s system manager.

Session Termination
The user can disconnect with “~.”. All forwarded connections can be listed with “~#”. All availa
escapes can be listed with “~?”. A single tilde character can be sent as “~~” (or by following
tilde with a character other than those described above). The escape character must always
carriage return to be interpreted as special. The escape character “~” can be changed in
configuration files or on the command line.

The session terminates when the command or shell on the remote system exits, or when the
logs out of an interactive session, and all X11 and TCP/IP connections have been closed. Th
status of the remote program is returned as the exit status of SSH.
6-5

Accessing Remote Systems with the Secure Shell (SSH) Utilities

l
rver

ration

 line.
ould be
X11 Forwarding
With X11 in use, the connection to the X11 display forwards to the remote side any X11 programs
started from the interactive session (or command) through the encrypted channel. Also, the
connection to the real X server is made from the local system. The user should not set
DECW$DISPLAY manually. Forwarding of X11 connections can be configured on the command
line or in configuration files.

The DECW$DISPLAY value set by SSH points to the server system with a display number greater
than zero. This is normal and happens because SSH creates a "proxy" X server on the server system
for forwarding the connections over the encrypted channel.

SSH sets up “fake” Xauthority data on the OpenVMS server, as OpenVMS does not support
Xauthority currently. It generates a random authorization cookie, stores it in Xauthority on the
server, and verifies that any forwarded connections carry this cookie and replace it by the rea
cookie when the connection is opened. The real authentication cookie is never sent to the se
system (and no cookies are sent in plain text).

Configuring the SSH Client
The SSH client uses only SSH2 configuration keywords. There are no SSH1-specific configu
keywords for the SSH client.

The SSH client obtains configuration data from the following sources (in this order):

1 Command line options. See Table 6-1 for details.

2 User's configuration file (in the local SYS$LOGIN [.SSH2]SSH2_CONFIG.) directory.
See Table 6-2 for details.

3 System-side configuration file (SSH2_DIR:SSH2_CONFIG.) See Table 6-2 for details.

For each parameter, the first obtained value is used. The configuration files contain sections
bracketed by "Host" specifications. That section applies only for hosts that match one of the
patterns given in the specification. The matched host name is the one given on the command
Since the first obtained value for each parameter is used, more host-specific declarations sh
given near the beginning of the file, and general defaults at the end.
6-6

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

d

Note! The qualifiers listed in Table 6 -1 are position dependent. You must place the qualifier(s)
immediately after the SSH command. So the correct syntax is SSH /qualifier node
command.

Table 6 -1 SSH Client Command Options and Qualifiers

Qualifier Description

/ALLOW_REMOTE_CONNECT Allow remote hosts to connect local port forwarding ports.
The default is only localhost; may connect to locally
binded ports.

/CIPHER=(cipher-1,...,cipher-n) Select encryption algorithm(s).

/COMPRESS Enable compression.

/CONFIG_FILE=file Read an alternative config file.

/DEBUG=level Set debug level.

/ESCAPE_CHARACTER=char Set escape character; “none” = disable (default: ~).

/HELP Display help text.

/IDENTITY_FILE=file Identity file for public key authentication.

/LOCAL_FORWARD=
([protocol/]listen-
port:host:port,...)

Causes the given port on the local (client) host to be
forwarded to the given host and port on the remote side.
The system to which SSH connects acts as the
intermediary between the two endpoint systems. Port
forwardings can be specified in the configuration file.
Only system can forward privileged ports.

See the Port Forwarding section for more details.

/LOG_FILE=logfilename Log all terminal activity to the specified log file. Defaults
to SSH.LOG if “logfilename” is not specified.

/MAC=(mac-1,...,mac-n) Select MAC algorithm(s).

/NO_X11_FORWARDING Disable X11 connection forwarding.

/OPTION=(option-1,...option-n) Gives options in the format used in the configuration file.
This is useful for specifying options for which there is no
separate command-line flag. The option has the same
format as a line in the configuration file, and are processe
prior to any keywords in the configuration file.

For example: /OPTION=(CompressionLevel=6)
6-7

Accessing Remote Systems with the Secure Shell (SSH) Utilities
/PORT=port Connect to this port on server system. Server must be
listening on the same port.

/QUIET Quiet Mode. Causes all warning and diagnostic messages
to be suppressed. Only fatal errors display.

/REMOTE_FORWARD=
([protocol/]listen-
port:host:port,...)

Forward remote port to local address. These cause ssh to
listen for connections on a port, and forward them to the
other side by connecting to host port.

/USE_NONPRIV_PORT Use a non-privileged (>1023) source port.

/USER=user Log in to the server system using this user name.

/VERBOSE Display verbose debugging messages. Equal to
“/DEBUG=2”.

/VERSION Display version number of the client.

Table 6-2 SSH2_CONFIG File Configuration Keywords

Keyword Value Default Description

AllowedAuthentications List PublicKey,
Password

Permitted techniques, listed in
desired order of attempt.

AuthenticationSuccessMsg Y/N Y Print message on successful
authentication

AuthorizationFile Filename Authorization Authorization file for
publickey authentication

BatchMode Y/N N Don’t prompt for any input
during session

Ciphers Cipher list None Supported encryption ciphers

ClearAllForwardings Y/N N Ignore any specified
forwardings

CompressionLevel Y/N N Enable data compression

ConnectionAttempts Number of
attempts

4 Number of retries by client to
connect to the server

DefaultDomain Domain Specify domain name

Table 6 -1 SSH Client Command Options and Qualifiers (Continued)

Qualifier Description
6-8

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

EscapeChar Character “~” Set escape character (^=ctrl
key)

ForwardAgent Y/N Y Enable agent forwarding

ForwardX11 Y/N Y Enable X11 forwarding

GatewayPorts Y/N N Gateway locally forwarded
ports

Host Pattern Begin section for this host

IdentityFile Filename Identification Name of identification file for
publickey authentication

KeepAlive Y/N Y Send keepalives

LocalForward Port,
Socket

Local port forwarding

Macs Algorithm None Select MAC (Message
Authentication Code)
algorithm

NoDelay Y/N N Disable Nagle
(TCP_NODELAY)

NumberOfPasswordPrompts Number 3 Number of times the user is
prompted for a password
before the connection is
dropped

PasswordPrompt String “%U’s
password:”

Password prompt

PasswordPromptLogin Y/N Y Username for password
prompt

Port Port 22 Server port number

QuietMode Y/N Y Quiet mode - only fatal errors
are displayed

RandomSeedFile Filename Random_seed Random seed file

Table 6-2 SSH2_CONFIG File Configuration Keywords (Continued)

Keyword Value Default Description
6-9

Accessing Remote Systems with the Secure Shell (SSH) Utilities
Notes Regarding SSH2_CONFIG
The user may specify default configuration options for different destination systems. The format of
this within the configuration file is:

hostname:
 keyword value
 keyword value

hostname2:
 keyword value
 keyword value

For example:

petunia:
 port 17300
 user dilbert
 host petunia.flowers.com

rose:
 port 16003
 user dogbert
 host rose.flowers.com
 allowedauthentications password

RekeyIntervalSeconds Seconds 3600 Number of seconds between
doing key exchanges during a
session. 0 = disable

RemoteForward Port,
Socket

Remote port forwarding

SendNOOPPackets Y/N N Send NOOP packets through
the connection. Used typically
to prevent a firewall from
closing an interactive session

StrictHostKeyChecking Y/N/Ask Y Behavior on host key
mismatch

User Username Remote username

VerboseMode Y/N N Verbose mode

Table 6-2 SSH2_CONFIG File Configuration Keywords (Continued)

Keyword Value Default Description
6-10

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

SH

ts to
f

*.beans.com:
 user limabean
 keepalive no
 ciphers 3des,twofish

In the preceding example:

• When a user types “$ SSH PETUNIA”, the system will connect to port 17300 on
petunia.flowers.com, and will use the default username of “dilbert”.

• When a user types “$ SSH ROSE”, the system will connect to port 16003 on host
rose.flowers.com, and will use the default username of “dogbert”, and only allow password
authentication.

• When a user types “$ SSH <anything>.BEANS.COM”, the system will use the default
username of “limabean”, and will not send keepalives, and will only allow 3DES or TWOFI
encryption.

The user may override defaults specified in configurations. Options that are specified on the
command line override any like options in the configuration file. For example, if the user wan
use a username of “catbert” when connecting to host rose instead of the default username o
“dogbert”, this would be specified as:

 $ SSH /USER=CATBERT ROSE

SSH Client/Server Authentication Configuration
Examples

 Hostbased Authentication Example
The following is an example of how to set up the SSH client and SSH2 server for Hostbased
Authentication:

$!
$! First, generate the host key - ONLY if it doesn’t exist!
$!
$ multinet sshkeygen /ssh2 /host
Generating 1024-bit dsa key pair
4 oOo.oOo.oOo

Key generated.
1024-bit dsa, myname@myclient.foo.com, Thu JUN 06 2002 13:43:54
Private key saved to multinet_ssh2_hostkey_dir:hostkey.
Public key saved to multinet_ssh2_hostkey_dir:hostkey.pub

$ directory multinet_ssh2_hostkey_dir:hostkey.*

Directory MULTINET_SPECIFIC_ROOT:[MULTINET.PSCSSH.SSH2.HOSTKEYS]
6-11

Accessing Remote Systems with the Secure Shell (SSH) Utilities
HOSTKEY.;1 HOSTKEY.PUB;1

Total of 2 files
$!
$! Copy the client system public key to the user directory on the server
$!
$! DECnet must be running before you execute the following commands:
$!
$ copy multinet_ssh2_hostkey_dir:hostkey.pub -
_$ myserv"myname myuser"::[.ssh2.knownhosts]myclient_foo_com_ssh-dss.pub
$!
$! Finally, log into the server system and ensure the
$! SSH_DIR:HOSTS.EQUIV file is correct
$!
$ SET HOST MYSERV

 Welcome to OpenVMS (TM) VAX Operating System, Version V7.3

Username: myname
Password:
 Welcome to OpenVMS VAX V7.3

 Last interactive login on Monday, 3-JUN-2002 17:07
 Last non-interactive login on Monday, 3-JUN-2001 08:30

MYSERV_$ type ssh_dir:hosts.equiv
#
HOSTS.EQUIV - names of hosts to have default "r" utility access to the local
system.
#
This file should list the full domain-style names.
#
This list augments the users’ SYS$LOGIN:.RHOSTS file for authentication.
Both the .RHOSTS and the HOSTS.EQUIV files are cached by multinet -
see the section entitled "RLOGIN and RSHELL Authentication Cache"
in the _Administrator’s Guide_ for more information on controlling
the cache.
#
This file is ignored for the users SYSTEM and ROOT. SYSTEM and ROOT
must have a SYS$LOGIN:.RHOSTS file if you want to use RSHELL or RLOGIN
with them.
#
localhost
myclient.foo.com myname
MYSERV_$
MYSERV_$ logout
 MYNAME logged out at 3-JUN-2002 13:46:58.91
%REM-S-END, control returned to node MYCLIENT::
6-12

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

Publickey Authentication Example
The following is an example of how to set up the SSH client and SSH2 server for Publickey
Authentication:

$!
$! First, generate a key tuple
$!
$ multinet sshkeygen /ssh2
Generating 1024-bit dsa key pair
 1 oOo.oOo.oOo.

Key generated.
1024-bit dsa, myname@myclient.foo.com, Thu Jun 06 2001 14:06:10
Passphrase :
Again :
Private key saved to DISK$USERDISK:[MYNAME.SSH2]id_dsa_1024_a.
Public key saved to DISK$USERDISK:[MYNAME.SSH2]id_dsa_1024_a.pub
$ directory [.ssh2]id*.*/since

Directory DKA0:[MYNAME.SSH2]

ID_DSA_1024_A.;1 ID_DSA_1024_A.PUB;1

Total of 2 files.
$!
$! Now create the IDENTIFICATION. file. This contains the name of
$! all the keys you wish to use for public-key authentication.
$!
$ set default [.ssh2]
$ copy tt: identification.
 idkey id_dsa_1024_a
 ^Z
$!
$! Copy the key to the user’s [.ssh2] directory on the server system
$!
$ copy id_dsa_1024_a.pub myserv"myname mypass"::[.ssh2]
$!
$! Now log into the server system and create the AUTHORIZATION file
$!
$ set host myserv

 Welcome to OpenVMS (TM) VAX Operating System, Version V7.3

Username: myname
Password:
 Welcome to OpenVMS VAX V7.3

 Last interactive login on Tuesday, 4-JUN-2002 13:46
 Last non-interactive login on Tuesday, 4-JUN-2002 13:47
6-13

Accessing Remote Systems with the Secure Shell (SSH) Utilities
$ set default [.ssh2]
$ directory [.ssh2]id*.*

Directory DKA0:[MYNAME.SSH2]

ID_DSA_1024_A.PUB;1

Total of 1 file.
$ copy tt: authorization.
key id_dsa_1024_a.pub
^Z
$ logout
 MYNAME logged out at 4-JUN-2002 14:10:26.16
%REM-S-END, control returned to node MYCLIENT::

SSH1 Example

$! An example of the procedure of setting up SSH to enable
$! RSA-based authentication.
$! Using SSH client node to connect to an SSH server node.
$!
$! On the client node
$!
$ MULTINET SSHKEYGEN /SSH1
Initializing random number generator...
Generating p: ++ (distance 662)
Generating q: ++ (distance 370)
Computing the keys...
Testing the keys...
Key generation complete.
Enter file in which to save the key
(DISK$SYS_LOGIN:[MYNAME.ssh]identity.):
Enter passphrase:
Enter the same passphrase again:
Your identification has been saved in
DISK$SYS_LOGIN:[MYNAME.ssh]identity..
Your public key is:
1024 33 13428..........29361 MYNAME@long.hair.com
Your public key has been saved in DISK$SYS_LOGIN:[MYNAME.ssh]identity.pub
$!
$! A TCP/IP stack must be loaded on the remote system.
$!
$ FTP DAISY /USER=MYNAME/PASSWORD=DEMONSOFSTUPIDITY -
_$ PUT DISK$SYS_LOGIN:[MYNAME.ssh]identity.PUB -
_$ DISK$SYS_LOGIN:[MYNAME.ssh]identity.PUB
long.hair.com MultiNet FTP user process V4.4(119)
Connection opened (Assuming 8-bit connections)
<daisy.hair.com MultiNet FTP Server Process V4.4(16) at Thu 6-Jun-2002
3:20PM-EDT
[Attempting to log in as myname]
6-14

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

<User MYNAME logged into DISK$SYS_LOGIN:[MYNAME] at Thu 6-JUN-2002 3:21PM-
EDT, job 20e00297.
<VMS Store of DISK$SYS_LOGIN:[MYNAME.SSH]IDENTITY.PUB; started.
<Transfer completed. 395 (8) bytes transferred.
<QUIT command received. Goodbye.
$
$ TELNET DAISY
Trying... Connected to DAISY.HAIR.COM.

 Authorized Users Only (TM) VAX Operating System, Version V7.1

Username: MYNAME
Password:
 Welcome to OpenVMS (TM) VAX Operating System, Version V7.1 on node
DAISY
 Last interactive login on Thursday, 6-JUN-2002 08:07
 Last non-interactive login on Thursday, 6-JUN-2002 15:21
 Logged into DAISY at 6-JUN-2002 15:22:43.68
$!
$! For the first entry into the AUTHORIZED_KEYS file copy
$! (or rename) the file [.SSH]IDENTITY.PUB to [.SSH]AUTHORIZED_KEYS.
$!
$ COPY [.SSH]IDENTITY.PUB [.SSH]AUTHORIZED_KEYS.
$
$! FOR SUBSEQUENT ENTRIES use the APPEND command
$!
$ APPEND [.SSH]IDENTITY.PUB [.SSH]AUTHORIZED_KEYS.
$
$! A sanity check of the file protections shows
$!
$ DIRECTORY/PROTECTION [.SSH]*.*

Directory DISK$SYS_LOGIN:[MYNAME.SSH]

AUTHORIZED_KEYS.;1 (RWE,RWED,RE,E)
IDENTITY.;1 (RWD,RWD,,)
IDENTITY.PUB;1 (RWE,RWED,RE,E)
KNOWN_HOSTS.;1 (RWD,RWD,,)
RANDOM_SEED.;1 (RWD,RWD,,)

Total of 5 files.
$!
$ DIRECTORY/PROTECTION SSH.DIR

Directory DISK$SYS_LOGIN:[MYNAME]

SSH.DIR;1 (RWD,RWD,,)

Total of 1 file.
6-15

Accessing Remote Systems with the Secure Shell (SSH) Utilities
Copying SSH2 Key Files
When copying public key files from systems to the system running the SSH server, it is important
for the key file to be created in STREAM-LF format or fixed-length 512-byte format on the VMS
system. Use DIRECTORY/FULL to determine the format of the key file. The following copy
operations should preserve the file format correctly from the specified source systems:

OpenVMS - MultiNet FTP in VMS mode
 - DCL COPY
 - FTP in BINARY mode
 - SCP2

Other O/S - SCP2
 - FTP in BINARY mode

If the key file is in VARIABLE format, the server is unable to read the key file successfully, with
the result that public-key authentication fails. To convert a VARIABLE format key file to
STREAM-LF format, the following FDL file may be used with the RMS CONVERT facility:

FIX_SSH2_KEYS.FDL:

TITLE "File for fixing SSH2 public keys"
IDENT "OpenVMS FDL Editor"
SYSTEM
 SOURCE "OpenVMS"
FILE
 ALLOCATION 64
 BEST_TRY_CONTIGUOUS yes
 EXTENSION 6
 ORGANIZATION sequential
RECORD
 BLOCK_SPAN yes
 CARRIAGE_CONTROL none
 FORMAT stream_LF
 SIZE 0

Port Forwarding
Port forwarding is a mechanism whereby programs that use known TCP/IP ports can have
encrypted data forwarded over unsecure connections. This is also known as "tunneling".

If the user is using an authentication agent, the connection to the agent is forwarded automatically
to the remote side unless disabled on the command line or in a configuration file. Forwarding of
arbitrary TCP/IP connections over the secure channel can be specified either in a configuration file
or on the command line using the following qualifier:

/LOCAL_FORWARD=([protocol/]localport:remotehost:remoteport)
6-16

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

DCL

d, the
SH2

he

n

This causes localport on the system the client is running on to be forwarded to
remotehost:remoteport. The system to which SSH2 connects acts as the intermediary
between the two endpoint systems.

The recognized values for the optional protocol are: TCP (default), HTTP(equivalent to TCP), and
FTP. The string inside of the () must be quoted “ “ when the protocol is specified to prevent
from interpreting the “/” as the start of a qualifier.

TCP and HTTP don’t do anything to the data passing over the connection. When FTP is use
data stream is examined for FTP, PORT, and PASV commands and their replies so that an S
data stream can be substituted for the FTP data ports.

For example: Use port forwarding to allow a system (midsys) to encrypt and forward TELNET
sessions between itself (mysys) that's outside a corporate firewall to a system (remotesys) that
is inside a corporate firewall. Note that the use of port 2300 in the examples is arbitrary.

From the DCL prompt on mysys:

$ SSH midsys /local_forward=(2300:remotesys:23)

With the SSH session to midsys now active, type in another window on mysys:

$ telnet localhost /port=2300

Note! The SSH session must remain active for port forwarding activity.

This causes a connection to mysys:2300. The SSH2 client has bound to this port, and will see t
connection request. SSH sends an "open channel" request to midsys, telling it there's a connect
request for port 23 on remotesys. Midsys will connect to remotesys:23, and send back the
port information to mysys. Mysys completes the connection request, and the TELNET sessio
between mysys and remotesys is now in place, using the tunnel just created through the
firewall between mysys and midsys.
6-17

All traffic between mysys and midsys (through the firewall) is encrypted/decrypted by SSH on
mysys and SSHD on midsys, and hence, is safe. TELNET does not know this, of course, and
does not care.

Note that ports can also be forwarded from a localhost to the remotehost that’s running SSHD, as
illustrated in this figure.

In this example, port 2300 on mysys is being forwarded to remotesys:23. To do this, use SSH
on mysys:

$ SSH remotesys /local_forward=(2300:remotesys:23)

Then, also on mysys, type:

$ telnet localhost /port=2300

When SSH and SSHD start their dialog, SSHD on remotesys connects back to itself, port 23,
and the TELNET session is established.

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

The qualifier

/REMOTE_FORWARD=([protocol/]remoteport1:remotehost:remoteport2)

causes remoteport1 on the system to which SSH connects to be forwarded to
remotehost:remoteport2. In this case, the system on which the client is running becomes
the intermediary between the other two systems.

For example, a user wants to use mysys to create a tunnel between sys1:4000 and sys2:23,
so that TELNET sessions that originate on sys1:4000 get tunneled to sys2 through the firewall.
On mysys, issue the command:

$ SSH sys1 /remote_forward=(4000:sys2:23)

Now, on sys1, a user could establish a TELNET session to sys1 by doing:

$ TELNET localhost /port=4000

The mechanism used for making the TELNET connection (setting up the tunnel) is essentially the
same as described in the /LOCAL_FORWARD example above, except that the roles of SSH and
SSHD in the dialog are reversed.
6-19

Accessing Remote Systems with the Secure Shell (SSH) Utilities

S
Other Files
The files in Table 6-3 are used by SSH. Note that these files generally reside in the [.SSH2]
subdirectory from the user’s SYS$LOGIN directory. The [.SSH2] subdirectory is created
automatically on your local system the first time SSH is executed, and on a remote OpenVM
system the first time an SSH connection is made to that system. File protection for
SYS$LOGIN:SSH2.DIR should be (S:RWD, O:RWD, G:, W:).

Note! HP’s TCP/IP services do not use the traditional UNIX rhosts and hosts.equiv files; it uses a
proprietary format. Therefore, any information added to HP’s files via the “ADD PROXY”
command must also be manually added to the SSH_DIR:RHOSTS and
SSH_DIR:HOSTS.EQUIV files in order for it to be used by SSH for OpenVMS.

Table 6-3 SSH2 Files

File Name
Resides
On Description

[.SSH2]SSH2_CONFIG. Client
System

This is the individual configuration
file. This file is used by the SSH2
client. It does not contain sensitive
information. The recommended file
protection is
(S:RWD,O:RWD,G:,W:).

[.SSH2]IDENTIFICATION Client
System

Contains the information about
private keys that can be used for
public-key authentication, when
logging in.

[.SSH2]ID_alg_bits_seq Client
System

Contains a private key for
authentication.

• alg is either RSA or DSA

• bits is the length of the key

• seq is an incrementing alphabetic
value

Thus, a key named ID_DSA_1024_A.
indicates this is a private DSA key
1024 bits long, and it is the first time
the key was generated using
SSHKEYGEN. A user may have
multiple private key files in a
directory.
6-20

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

[.SSH2]ID_alg_bits_seq.PUB Client
System
and
Server
System

Contains a public key for
authentication.

• alg is either RSA or DSA

• bits is the length of the key

• seq is an incrementing alphabetic
value

Thus, a key named
ID_DSA_1024_B.PUB indicates this
is a public DSA key 1024 bits long,
and it is the second time the key was
generated using SSHKEYGEN. A
user may have multiple public key
files in a directory.

[.SSH2.HOSTKEYS]xxx.PUB Client
System

Contains public host keys for all hosts
the user has logged into. The files
specifications have the format
KEY_port_hostname.PUB

• port is the port over which the
connection was made

• hostname is the hostname of the
key’s host.

For example, if tulip.flowers.com
was accessed via port 22, the keyfile
would be
"KEY_22_TULIP_FLOWERS_
COM.PUB". If this file changes on
the host (for example, the system
manager regenerates the host key),
SSH2 will note this and ask if you
want the new key saved. This helps
prevent man-in-the-middle attacks.

Table 6-3 SSH2 Files (Continued)

File Name
Resides
On Description
6-21

Accessing Remote Systems with the Secure Shell (SSH) Utilities
[.SSH2]RANDOM_SEED. Client
System

Seeds the random number generator.
This file contains sensitive data and
MUST have a protection of no more
than (S:RWD,O:RWD,G:,W:), and it
must be owned by the user. This file
is created the first time the program is
run and is updated automatically. The
user should never need to read or
modify this file. On OpenVMS
systems, multiple versions of this file
will be created; however, all older
versions of the file may be safely
purged.

Use the DCL command:
SET FILE /VERSION_LIMIT=n
RANDOM_SEED to set a limit on
the maximum number of versions of
this file that may exist at any given
time.

SSH_DIR:.RHOSTS Server
System

Is used in hostbased authentication to
list the host/user pairs that are
permitted to log in.

Each line of the file contains a host
name (in the fully-qualified form
returned by name servers), and then a
user name on that host, separated by a
space. This file must be owned by the
user, and must not have write
permissions for anyone else. The
recommended permission is read/
write for the user, and not accessible
by others.

SSH_DIR:.SHOSTS Server
System

Is used the same way as .RHOSTS.

Table 6-3 SSH2 Files (Continued)

File Name
Resides
On Description
6-22

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

SSH_DIR:HOSTS.EQUIV Server
System

Is used during .rhosts authentication.
It contains fully-qualified hosts
names, one per line. If the client host
is found in this file, login is permitted
provided client and server user names
are the same. Additionally, successful
RSA host authentication is required.
This file should only be writable by
SYSTEM.

SSH_DIR:SHOSTS.EQUIV Server
System

Is processed exactly as
SSH_DIR:HOSTS.EQUIV. This file
may be useful to permit logins using
SSH but not using rshell/rlogin.

SSH2_DIR:SSH2_CONFIG Client
System

This is a system-wide client
configuration file. This file provides
defaults for those values that are not
specified in a user’s configuration
file, and for users who do not have a
configuration file. This file must be
world-readable.

MULTINET_SSH2_KNOWNHOSTS_DIR Server
System

Contains public host keys for all hosts
the system has logged into. The files
specifications have the format
KEY_port_hostname.PUB

• port is the port over which the
connection was made

• hostname is the hostname of the
key’s host.

For example, if tulip.flowers.com
was accessed via port 22, the keyfile
would be
"KEY_22_TULIP_FLOWERS_
COM.PUB". If this file changes on
the host (for example, the system
manager regenerates the host key),
SSH will note this and ask if you
want the new key saved. This helps
prevent man-in-the-middle attacks.

Table 6-3 SSH2 Files (Continued)

File Name
Resides
On Description
6-23

Accessing Remote Systems with the Secure Shell (SSH) Utilities

SSHKEYGEN
Generates authentication key pairs. The format of the keys is incompatible between SSH1 and
SSH2. Therefore, the correct format keys must be generated for each version of the protocol to be
supported.

There is no way to recover a lost passphrase. If the passphrase is lost or forgotten, you need to
generate a new key and copy the corresponding public key to other systems.

Each key may be protected via a passphrase, or it may be left empty. Good passphrases are 10-30
characters long and are not simple sentences or otherwise easily guessable. Note that the passphrase
can be changed later, but a lost passphrase cannot be recovered, as a “one-way” encryption
algorithm is used to encrypt the passphrase.

Note! The Host Key has no password.

SSH1

MULTINET SSHKEYGEN /SSH1 [/BITS=n] [/IDENTITY_FILE=file]
 [/PASSPHRASE=passphrase] [/COMMENT=comment]
MULTINET SSHKEYGEN /SSH1 /CHANGE_PASSPHRASE [/PASSPHRASE=old_passphrase]
 [/NEW_PASSPHRASE=new_passphrase]
MULTINET SSHKEYGEN /SSH1 /CHANGE_COMMENT [/PASSPHRASE=passphrase]
 [/COMMENT=comment]
MULTINET SSHKEYGEN /SSH1 /CHANGE_CIPHER [/IDENTITY_FILE=file]
 [/PASSPHRASE=passphrase]
MULTINET SSHKEYGEN /SSH1 [/HOST][/BITS=n][/COMMENT=comment]
6-24

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

Table 6-4 SSH1 SSHKEYGEN Options

SSH2

MULTINET SSHKEYGEN /SSH2[/BITS=n][/COMMENT=comment][/KEYTYPE=type]
 [/KEYS=(key1...keyn)]
 [/PASSPHRASE=ppp|/NOPASSPHRASE][/STIR=file][/QUIET]
MULTINET SSHKEYGEN /SSH2/HOST
 [/BITS=n][/COMMENT=comment][/STIR=file][/QUIET]
MULTINET SSHKEYGEN /SSH2/DERIVE_KEY=file
MULTINET SSHKEYGEN /SSH2/EDIT=file
MULTINET SSHKEYGEN /SSH2/FINGERPRINT=file
MULTINET SSHKEYGEN /SSH2/INFO=file [/BASE=n]
MULTINET SSHKEYGEN /SSH2/CONVERT_SSH1=file
MULTINET SSHKEYGEN /SSH2/CONVERT_X509=file
MULTINET SSHKEYGEN /SSH2/CONVERT_PKCS=file
MULTINET SSHKEYGEN /SSH2/EXTRACT_CERTS=file
MULTINET SSHKEYGEN /SSH2/HELP
MULTINET SSHKEYGEN /SSH2/VERSION

Option Description

/BITS=nnn Specify key strength in bits
(default = 1024).

/CHANGE_PASSPHRASE Change the passphrase of private key file.

/CHANGE_COMMENT Change the comment for a key.

/CHANGE_CIPHER Change the cipher to current default (3DES).

/COMMENT=”comment” Provide the comment.

/HOST Generate the host key.

/IDENTITY_FILE=file Specify the name of the host key file.

/PASSPHRASE=ppp Provide the current passphrase.

/NEW_PASSPHRASE=ppp Provide new passphrase.

/VERSION Print sshkeygen version number.
6-25

Accessing Remote Systems with the Secure Shell (SSH) Utilities
Table 6-5 SSH2 SSHKEYGEN Options

Option Description

/BASE=nnn Number base for displaying key info

/BITS=nnn Specify key strength in bits (default = 1024).

/COMMENTS=”comment” Provide the comment.

/CONVERT_PKCS=file Convert a PKCS 12 file to an SSH2 format
certificate and private key.

/CONVERT_SSH1=file Convert SSH1 identity to SSH2 format.

/CONVERT_X509=file Convert private key from X.509 format to
SSH2 format.

/DERIVE_KEY=file Derive the private key given in ‘file’ to
public key.

/EDIT=file Edit the comment/passphrase of the key.

/EXTRACT_CERTS=file Extract certificates from a PKCS 7 file.

/FINGERPRINT=file Dump the fingerprint of file.

/INFO=file Load and display information for ‘file’.

/HELP Print help text.

/HOST Generate the host key.

/KEYS=(key1,...,keyn) Generate the specified key file(s).

/KEYTYPE=(dsa | rsa) Choose the key type: dsa or rsa.

/PASSPHRASE=ppp Provide the current passphrase.

/NOPASSPHRASE Assume an empty passphrase.

/QUIET Suppress the progress indicator.

/STIR=file Stir data from file to random pool.

/VERSION Print sshkeygen version number.
6-26

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

an be

hat

There is also a comment field in the public key file that is for the convenience to the user to help
identify the key. The comment can tell what the key is for, or whatever is useful. The comment is
initialized to nnn-bit dsa, username@hostname, ddd mm-dd-yyyy hh:mm:ss when the
key is created unless the /COMMENT qualifier is used, and may be changed later using the /EDIT
qualifier.

Note! When the /HOST qualifier is used, the /KEYS=(key1,...keyn) qualifier is ignored.

SSHAgent (authentication agent)

MULTINET SSHAGENT

DESCRIPTION
SSHAGENT is a program that holds authentication private keys. Both SSH1 and SSH2 keys are
supported by SSHAGENT. SSHAGENT may be started in the beginning of a login session by
including the commands to start it in, for example, LOGIN.COM. It may also be started
interactively at any time during a login session.

To start SSHAGENT, one of the three methods may be used:

1. Start it in a separate window:

 $ MULTINET SSHAGENT

2. Spawn it as a subprocess:

 $ SPAWN/NOWAIT MULTINET SSHAGENT

3. Run it in a detached process:

 $ RUN/DETACHED/OUTPUT=AGENT.OUT/PROCESS_NAME="SSH_AGENT"/INPUT=NLA0:
 SSH_EXE:SSH-AGENT2

The agent is used for Publickey Authentication when logging to other systems using SSH. A
connection to the agent is available to all programs run by all instances of the user on a specific
system. The name of the mailbox used for communicating with the agent is stored in the
MULTINET_SSH_AGENT_ username logical name. Note that while the agent mailbox is
accessible only by the user that starts the agent, a user with sufficient VMS privileges could access
the agent mailbox and steal or modify keys currently loaded into the agent (although, the keys as
stored on disk cannot be modified simply by accessing the agent).

The agent does not have any private keys initially. Keys are added using SSHADD. When executed
without arguments, SSHADD adds the user’s identity files. If the identity has a passphrase,
SSHADD asks for the passphrase. It then sends the identity to the agent. Several identities c
stored in the agent; the agent can use any of these identities automatically.

$ MULTINET SSHADD /LIST displays the identities currently held by the agent. The idea is t
the agent is run on the user's workstation.
6-27

Accessing Remote Systems with the Secure Shell (SSH) Utilities

ry

t
se
e

FILES

SSHADD
Adds identities for the authentication agent.

MULTINET SSHADD [OPTIONS] [FILE[,FILE,FILE]]

DESCRIPTION
SSHADD adds identities to SSHAGENT, the authentication agent. When run without arguments,
SSHADD adds the file [.SSH]IDENTITY. Alternative file names can be given on the command
line. If any file requires a passphrase, SSHADD asks for the passphrase from the user.

The authentication agent must be running and must have been executed by the user for SSHADD to
work.

“File” is an identity or certificate file. If no file is specified, the files in the users[.SSH2] directo
are used.

OPTIONS

[.SSH]IDENTITY
in SYS$LOGIN:

Contains the RSA authentication identity of the user. This file should no
be readable by anyone but the user. It is possible to specify a passphra
when generating the key. That passphrase is used to encrypt the privat
part of this file. This file is not used by SSHAGENT, but is added to the
agent using SSHADD at login.

/HELP Display help text.

/LIST List all identities currently represented by the agent.

/LOCK Lock the agent with a password.

/NOSSH1 Agent cannot use SSH1 keys.

/PURGE Remove all identities from the agent.

/REMOVE Remove the identity from the agent.

/TIMEOUT=n Agent should delete this key after the timeout value (in seconds) expires.

/UNLOCK Unlock the locked agent.

/URL Give key to the agent as a URL.
6-28

 Accessing Remote Systems with the Secure Shell (SSH) Utilities

FILES
These files exist in SYS$LOGIN:

[.SSH]IDENTITY Contains the RSA authentication identity of the user. This file
should not be readable by anyone but the user. It is possible to
specify a passphrase when generating the key. That passphrase is
used to encrypt the private part of this file. This is the default file
added by SSHADD when no other files have been specified.

If SSHADD needs a passphrase, it reads the passphrase from the
current terminal if it was run from a terminal. If SSHADD does not
have a terminal associated with it but DECW$DISPLAY is set, it
opens an X11 window to read the passphrase.

[.SSH]IDENTITY.PUB Contains the public key for authentication. The contents of this file
should be added to [.SSH]AUTHORIZED_KEYS on all systems
where you want to log in using RSA authentication. There is no
need to keep the contents of this file secret.

[.SSH]RANDOM_SEED Seeds the random number generator. This file should not be
readable by anyone but the user. This file is created the first time the
program is run, and is updated every time SSHKEYGEN is run.
6-29

Accessing Remote Systems with the Secure Shell (SSH) Utilities
6-30

, which

th

CP2

Chapter 7

Secure File Transfer
The Secure File Transfer mechanism consists of three programs — the client program SCP2
includes an embedded SFTP server for local file access, and SFTP-SERVER2 and
SCP-SERVER1, which run on the remote system to access the file. SCP2 communicates wi
SSH2 for authentication and data transport (which includes encryption) to remote systems,
SFTP-SERVER2 communicates with SSHD2 for data transport.

The following diagram illustrates the relationship among the client and server portions of an S
file transfer:
7-1

Secure File Transfer

n is
 or
o
 an
e

ut the
s

will
 on the
vided
ystem.
em,

and.
nslate
e
e that
d

alid
data.
d never
ms as
SCP file transfers are different from FTP file transfers. With FTP a file can be transferred as ASCII,
BINARY, RECORD, or in VMS Plus mode (if Compaq TCP/IP Services for OpenVMS is in use).
In SCP there is one specified format — BINARY. Also, the defined syntax for a file specificatio
UNIX syntax. Due to these restrictions, files that are transferred from dissimilar systems may
may not be useful. Process Software has used methods available in the protocol to attempt t
improve the chances that files will be useful upon transfer. The SSH File Transfer Protocol is
evolving specification, and some implementations may not support all options available in th
protocol, or worse, not tolerate some optional parts of later versions of the protocol.

Process Software has used the defined extensions in the protocol to transfer information abo
VMS file header characteristics such that when a file is transferred between two VMS system
running MultiNet v4.4, TCPware v5.6, and/or SSH for OpenVMS, the file header information
also be transferred and the file will have the same format on the destination system as it had
source system. Also, when a file is transferred to a non-VMS system, a method has been pro
to translate those files that can be translated into a format that will be usable on the remote s
Files that are transferred from non-VMS systems are stored as stream files on the VMS syst
which provides compatibility for text files from those systems.

SCP-SERVER1
The SCP-SERVER1 program is used when a system with OpenSSH initiates an SCP comm
OpenSSH uses RCP over SSH2 instead of the SFTP protocol. SCP-SERVER1 will always tra
VMS text files (if possible) when copying a file from VMS. Translated VMS text files may hav
some trailing nulls at the end of them, due to the RCP protocol not being able to tolerate a fil
comes up short of the reported size. SCP-SERVER1 (and SFTP-SERVER2) use sophisticate
methods to estimate the amount of user data in the file to minimize this. On ODS-5 disks the
estimation routine uses the file size hint if it is valid. On ODS-2 disks (and ODS-5 without a v
size hint), the size of the file and file characteristics are used to estimate the amount of user
The method provides as accurate an estimate as possible without actually reading the file an
underestimates the amount of data in the file. Underestimating would cause significant proble
the programs use the size of the file to determine how much data to expect.

SCP2

Usage

SCP2 [qualifiers] [[user@]host[#port]::]file [[user@]host[#port]::]file

Note! The source and destination file specification must be quoted if they contain a user specification
or a non-VMS file specification.
7-2

 Secure File Transfer

Qualifiers

Table 7 -1 SCP Qualifiers

Qualifier Description

/BATCH
Starts SSH2 in batch mode. Authentication must be
possible without user interaction.

/BUFFER_SIZE=integer
Number of bytes of data to transfer in a buffer.
Default is 7500. Minimum value is 512.

/CIPHER=(cipher-1,...,cipher-n)
Selects an encryption algorithm(s).

/COMPRESS Enables SSH data compression.

/CONCURRENT_REQUEST=integer
Number of concurrent read requests to post to the
source file. Default is 4.

/DEBUG=level Sets a debug level. (0-99)

/DIRECTORY Forces the target to be a directory.

/HELP Displays the help text.

/IDENTITY_FILE=file Identifies the file for public key authentication.

/PORT=number Tells SCP2 which port SSHD2 listens to on the
remote machine.

/PRESERVE Preserves file attributes and timestamps.

/NOPROGRESS Does not show progress indicator.

/QUIET Does not display any warning messages.

/RECURSIVE Processes the entire directory tree.

/REMOVE Removes the source files after copying.

/TRANSLATE_VMS=
(ALL, NONE, VARIABLE, FIXED, VFC)

Selects the VMS text files to be translated
(default=ALL).

/VERBOSE Displays verbose debugging messages.
Equal to "/debug=2".
7-3

Secure File Transfer
Note! /VMS and /TRANSLATE_VMS are mutually exclusive

File Specifications
The source and destination strings are changed to lowercase unless they are enclosed in quotes, in
which case they are left the same. File specification must be in UNIX format for remote systems,
unless the remote system is running TCPware 5.6, MultiNet v4.4, or SSH for OpenVMS, and
/VMS or /TRANSLATE_VMS (source files only) are used. UNIX format file specifications need to
be enclosed in quotes (") if they contain the / character to prevent the DCL parsing routines from
interpreting the string as a qualifier.

Qualifiers

/BATCH
Starts SSH2 in BATCH mode. When SSH2 is running in BATCH mode it does not prompt for a
password, so user authorization is accomplished by Public-Key authentication.

/BUFFER_SIZE=integer

Number of bytes of data to transfer in a buffer. Default is 7500.

/CIPHER=(cipher,...,cipher-n)
Lets you select which SSH2 cipher to use.

/COMPRESS
Enables SSH2 data compression. This can be beneficial for large file transfers over slow links. The
compression level is set by the client configuration file for SSH2.

/CONCURRENT_REQUEST=integer
Number of concurrent read requests to post to the source file. Default is 4.

/VERSION Displays the version number only.

/VMS Negotiates the ability to transfer VMS file
information.

Table 7 -1 SCP Qualifiers (Continued)

Qualifier Description
7-4

 Secure File Transfer

/DEBUG
Enables debugging messages for SCP2 and SSH2. Higher numbers get more messages. The legal
values are between 0 (none) and 99. Debugging for SFTP-SERVER2 is enabled via the
MULTINET_SSH_SFTP_SERVER_DEBUG logical.

/DIRECTORY
Informs SCP2 that the target specification should be a directory that the source file(s) will be put in.
This qualifier is necessary when using wildcards in the source file specification, or /RECURSIVE.

/HELP
Displays command qualifier list and parameter format.

/IDENTITY_FILE=file
Specifies the identity file that SSH2 should use for Public-Key authentication.

/PORT=number
Specifies the port that SSH2 uses on the remote system. Note that if both the source and destination
files are remote, this value is applied to both. If SSH2 is available on different ports on the two
systems, then the #port method must be used.

/PRESERVE
Sets the Protection, Owner (UIC), and Modification dates on the target file to match that of the
source file. /PRESERVE is not very useful when the target machine is a VMS system as VMS does
not provide runtime library calls for setting the file attributes (owner, protection) and timestamps.
Note that the VMS modification date (not the creation date) is propagated to the remote system.
When files are copied between two VMS systems and /VMS is used /PRESERVE is implied and
the process of transferring VMS attributes preserves the information about the protection, dates,
and file characteristics. The file access time is not adjusted for the difference between local time
and GMT.

/NOPROGRESS
SCP2, by default, updates a progress line at regular intervals when it is run interactively to show
how much of the file has been transferred. This qualifier disables the progress line.

/QUIET
Disables warning messages. Note that it does not disable warning messages from SFTP-SERVER2,
which return on the error channel.

/RECURSIVE
Copies all of the files in the specified directory tree. Note that the top level directory on the local
system is not created on the remote system. When /VMS is used, all versions of the files are copied.
7-5

Secure File Transfer
When /VMS is not used, only the most recent version is copied.

/REMOVE
Deletes the source files after they have been copied to the remote system.

/TRANSLATE_VMS
Translates VMS text files in the copying process to byte streams separated by linefeeds because the
defined data transfer format for SCP2 is a binary stream of bytes.

/TRANSLATE_VMS is only applicable to the source specification. If a remote source file is
specified, then that system must be running MultiNet v4.4, TCPware 5.6, or SSH for OpenVMS. If
/TRANSLATE_VMS is specified with no value, then VARIABLE, FIXED, and VFC (Variable,
Fixed Control) files are translated to stream linefeed files. If the value is NONE, no files are
translated. VARIABLE, FIXED, and VFC can be combined in any manner. The SFTP-SERVER2
process also uses the value of the logical MULTINET_SFTP_TRANSLATE_VMS_FILE_TYPES
to determine which files should be translated. This is a bit mask with bit 0 (1) = FIXED, bit 1 (2) =
VARIABLE, and bit 2 (4) = VFC. These values can be combined into a number between 0 and 7 to
control which files are translated.

Note! Due to the structure of the programs, the SCP2 program uses this logical if the
/TRANSLATE_VMS qualifier has not been specified.

/VERBOSE
Displays debugging messages that allow the user to see what command was used to start up SSH
and other basic debugging information. Note that debugging information can interfere with the
normal display of the progress line. Equivalent to /DEBUG=2.

/VERSION
Displays the version of the base SCP2 code.

/VMS
Transfers VMS file information similar to that transferred in OVMS mode in FTP such that VMS
file structure can be preserved. All of the information transferred in FTP OVMS mode is
transferred along with the file creation date and protection. If the file is a contiguous file, and it is
not possible to create the file contiguously, and the logical
MULTINET_SFTP_FALLBACK_TO_CBT has the value of TRUE, YES, or 1, SFTP-SERVER2
attempts to create the file Contiguous, Best Try. VMS mode is only available with SCP2 provided
in MultiNet v4.4 and TCPware 5.6, and SSH for OpenVMS. /VMS also modifies the usual
sequence of operations that SCP2 does such that a new version of the file is created if there are
existing versions. Without /VMS, the most recent version of the target file is deleted (if it exists)
before the new file is written. This is to accommodate systems that do not handle multiple versions
of files.
7-6

 Secure File Transfer

The logical name MULTINET_SCP2_VMS_MODE_BY_DEFAULT can be defined to TRUE,
YES, or 1 to specify that /VMS should be the default unless /NOVMS or /TRANSLATE_VMS are
specified. /VMS and /TRANSLATE_VMS can not be used on the same command line. If /VMS is
not specified, but the logical is set to enable it by default, a /TRANSLATE_VMS on the command
line will take precedence.

Note that even though SCP2 & SFTP-SERVER2 pass the request for VMS file transfers or to
translate a VMS file in a manner that is consistent with the protocol specification, other
implementations may not handle this information well. Since there is no error response present at
that point in the protocol, the program hangs. To prevent it from hanging forever, the logical
MULTINET_SCP2_CONNECT_TIMEOUT is checked to see how long SCP2 should wait for a
response when establishing the connection. The format for this logical is a VMS delta time. The
default value is 2 minutes. If SCP2 times out before a connection is established with SFTP-
SERVER2 and /VMS or /TRANSLATE_VMS were specified, a warning message is displayed and
the initialization is tried again without the request for VMS information (or /TRANSLATE_VMS).
This retry is also subject to the timeout, and if the timeout happens again, then SCP2 exits. This
helps for implementations that ignore the initialization message when information they do not
recognize is present; implementations that abort will cause SCP2 to exit immediately.

Logicals
The following logicals apply to both SCP2 and SFTP-SERVER:

MULTINET_SFTP_FALLBACK_TO_CBT
MULTINET_SFTP_TRANSLATE_VMS_FILE_TYPES
MULTINET_SFTP_RETURN_ALQ

MULTINET_SFTP_FALLBACK_TO_CBT
When defined to TRUE, YES, or 1 and a VMS file transfer is being performed, this logical creates
a Contiguous file if that file has Contiguous characteristics. The file will be created as Contiguous
Best Try if there is insufficient space to create it as Contiguous.

MULTINET_SFTP_TRANSLATE_VMS_FILE_TYPES
This is a bit mask that determines which VMS file types should be translated when not operating in
VMS mode.

• Bit 0 (1) = FIXED

• Bit 1 (2) = VARIABLE

• Bit 2 (4) = VFC

The values are:

• 0 (zero) = NONE

• 7 = ALL

Note that this logical affects SCP2 as well as the server, as SCP2 has the server built into it for
handling local file access.
7-7

Secure File Transfer

r

gging

se the
nd data

ssword
alive,
 channel.
e / in
MULTINET_SCP2_CONNECT_TIMEOUT
This logical defines a number specifying how long SCP2 should wait for a response to the
INITIALIZE command from the server program. This is a VMS delta time number. The default is 2
minutes.

MULTINET_SCP2_VMS_MODE_BY_DEFAULT
When defined to TRUE, YES, or 1, this logical chooses the /VMS qualifier if /TRANSLATE_VMS
or /NOVMS has not been specified.

MULTINET_SFTP_RETURN_ALQ
When defined to TRUE, YES, or 1 and files are being transferred in VMS mode, this logical
includes the Allocation Quantity for the file in the file header information. This is disabled by
default because copying a small file from a disk with a large cluster size to a disk with a small
cluster size causes the file to be allocated with more space than necessary. You have the option of
retaining the allocated size of a file if it was allocated the space for a reason. Some combinations of
file characteristics require that the Allocation Quantity be included in the file attributes; this is
handled by SCP2/SFTP-SERVER2.

MULTINET_SSH_SCP_SERVER_DEBUG
Enables debugging messages for the SCP-SERVER1 image that provides service to SCP
commands that use the RCP over SSH2 protocol (OpenSSH). When this is defined, the file
SCP-SERVER.LOG is created in the user’s login directory. These files are not purged. Large
values yield more debugging information.

MULTINET_SSH_SFTP_SERVER_DEBUG
Enables debugging messages for the SFTP-SERVER2 image that provides service to SCP2
commands that use the SFTP protocol. When this is defined, the file SFTP-SERVER.LOG is
created in the user’s login directory. These files are not purged. Larger values yield more debu
information.

FTP over SSH
SSH2 can be used to set up port forwarding that can be used for FTP. This allows users to u
richness of the FTP command set to access files on a remote system and have their control a
information encrypted. The command format to set up the SSH port forwarding is:

$ ssh <remote_host_name>/local_forward=
(“““ ftp/<forwarded_port_number>:localhost:21”””)

The usual SSH authentication mechanisms come into play, so there may be a request for a pa
and a terminal session is established to the remote host. As long as this terminal session is
other users on the local system can use FTP to access the remote system over an encrypted
The location of the quotes is important, as it is necessary to prevent DCL from interpreting th
7-8

 Secure File Transfer

ing

uld be

d port.
V

a secure

tion is

the local forwarding information as the start of a new qualifier, and SSH2 does not know or expect
to find the () around the forwarding information. Note that the “localhost” inside of the forward
string is important, as it will make the connection to FTP on the remote system come from
localhost, which will then allow FTP to open the data port.

When a user desires to use an encrypted FTP connection, the following OPEN command wo
issued to the TCP/IP Services for OpenVMS FTP client:

OPEN LOCALHOST <forward_port_number>

 Normal FTP authentication takes place and multiple FTP sessions may use a single forwarde
The FTP protocol filter in SSH2 scans the FTP command stream for the FTP PORT and PAS
commands and their replies, and makes substitutions in these commands and replies to use
data stream through the SSH2 session that has been set up.

To allow a single system to act as a gateway between two networks, add
/ALLOW_REMOTE_CONNECT to the SSH command that initiates the connection. This
command will establish an encrypted FTP session with the remote host that the SSH connec
sent to.

7-9

Secure File Transfer
7-10

Chapter 8

Monitoring and Controlling SSH
SSH for OpenVMS provides utilities for monitoring and controlling the SSH server environment.
The following topics describe the utilities, their capabilities, and their use.

Controlling SSH Server Functions
The following control functions are available for the SSH servers:

• Startup

• Shutdown

• Restart

• Set debug level

The SSHCTRL Utility
The SSHCTRL utility is used to perform all but the startup function. For the startup function, the
SYS$STARTUP:PSCSSH$STARTUP.COM file is used.

Usage: SSHCTRL <operation> [options]

Table 8-1 shows the various operations that can be used with the SSHCTRL utility.
8-1

Monitoring and Controlling SSH

nding
ter
Table 8-1 SSHCTRL Utility Operations

Starting the SSHD Master Process
$ @SYS$STARTUP:PSCSSH$STARTUP
Starting SSH for OpenVMS...
%RUN-S-PROC_ID, identification of created process is 22C000AD
$

Shutting down the SSHD Master Process
This function is used to stop the SSHD Master process on the system, so it won’t accept new
connections. Note that shutting down the SSHD Master process will also terminate all outsta
SSH server sessions on the system. OPER privilege is required to shut down the SSHD Mas
process and its servers.

$ SSHCTRL SHUTDOWN
Shutting down SSH for OpenVMS...
$

Operation Description

SET /DEBUG=n Set debug level (0 = no debug)

SHOW Show session information.

SHOW /ALL Show all sessions. This is the default if no switch is
used with the SHOW keyword.

SHOW /USER=username Show sessions for <username>.

SHOW /HOST=address Show sessions for <address>.

SHUTDOWN Stop all SSH server sessions.

RESTART Stop/restart SSH server.

HELP Display help text.

VERSION Display version information.
8-2

 Monitoring and Controlling SSH

Restarting the SSHD Master Process
Restarting the SSHD Master process is required after the CNFSSH utility is used to modify the
existing configuration. Note that restarting the SSHD Master process will terminate all outstanding
SSH server sessions on the system. OPER privilege is required to restart the SSHD Master process.

$ SSHCTRL RESTART
Shutting down SSH for OpenVMS...
Starting SSH for OpenVMS...
%RUN-S-PROC_ID, identification of created process is 22C000B8
$

Changing the Server Debug Level
The server debug level is changed using SSHCTRL. The debug level controls the amount of debug
information written to the SSH_LOG:SSHD.LOG file for each server instance. This may be a value
from 0 (no debug) to 50 (maximum debug). Process Software recommends this value not be set
above 5 without instructions from Process Software, as the amount of debug information written to
the log at higher levels can severely impact both the SSH server performance and the server host
disk resources.

Note that setting the debug level only affects new server processes which are started after setting
the level. Currently active servers use the debug level set when they were started. OPER privilege
is required to change the debug level.

$ SSHCTRL SET/DEBUG=4
SSHCTRL-S-DEBUGSET - old debug level = 2, new debug level = 4
$

Displaying SSH Server Utilization
The SSHCTRL SHOW command is used to display the active SSH server sessions on a system. It
can display all users (/ALL), users with a specific username (/USER=dogbert), or users with
sessions that originate from a specific host (/HOST=192.168.29.248).

Normally, a user may only display the sessions with the same UIC as his own. GROUP privilege is
required to display the sessions with UICs in the same group as the user. WORLD privilege is
required to display all other servers.

For each session, the display is of the following form:

Process “<processname>” (pid<pid>) - an <ssh1|ssh2>session
 User = <login username>
 From system <originating address>port<originating port>
 Started: <date/time session was started>
 Bytes in: <count> out: <count> (from child process <count>)
Child process = “<process name>”(pid<pid>) - an <type> session
8-3

Monitoring and Controlling SSH

ually
 PTD Device = <_FTAnn:>
 Started <date/time this child started>

Note that SSH2 provides the capability for one server to handle multiple child sessions. The child
sessions may be a mixture of interactive SSH2 sessions and file transfer (SCP/SFTP) sessions.
Currently, only the F-Secure SSH Client for Windows has this capability.

In Example 8-1, a display of all users on the system is done. Note that server “SSHD 0003” act
has six active child processes.

Example 8-1 Showing All Active Server Sessions

$ SSHCTRL SHOW /ALL

SSHD Master PID = 22C000B8

Debug level is set to 4

Process "SSHD 0000" (pid 22C000B9) - an SSH2 session
 User = dilbert
 From system 192.168.29.52 port 49152
 Started: 05/03/2002 03:05:22
 Bytes in: 262 out: 0 (from child process: 15100)

 Child process = "DILBERT_@FTA4" (pid 22C000BA) - an SSH2 session
 PTD Device = _FTA4:
 Started: 05/03/2002 03:05:35

Process "SSHD 0003" (pid 22C000BF) - an SSH2 session
 User = DOGBERT
 From system 192.168.29.50 port 1129
 Started: 05/03/2002 03:07:46
 Bytes in: 0 out: 0 (from child process: 55215)

 Child process = "DOGBERT_@FTA9" (pid 22C000C0) - an SSH2 session
 PTD Device= _FTA9:
 Started: 05/03/2002 03:07:54
 Child process = "SSHD 0003A SFTP" (pid 22C000C1) - an SFTP-SERVER2 session
 PTD Device = _FTA10:
 Started: 05/03/2002 03:07:55
 Child process = "DOGBERT_@FTA11" (pid 22C000C2) - an SSH2 session
 PTD Device = _FTA11:
 Started: 05/03/2002 03:07:57
 Child process = "SSHD 0003B SFTP" (pid 22C000C3) - an SFTP-SERVER2 session
 PTD Device = _FTA12:
 Started: 05/03/2002 03:08:00
 Child process = "SSHD 0003C SFTP" (pid 22C000C4) - an SFTP-SERVER2 session
 Device = _FTA13:
 Started: 05/03/2002 03:08:07
 Child process = "DOGBERT_@FTA14" (pid 22C000C5) - an SSH2 session
 PTD Device = _FTA14:
 Started: 05/03/2002 03:08:09

Process "SSHD 0004" (pid 22C000C6) - an SSH1 session
 User = CATBERT
 From system 192.168.29.51 port 1023
8-4

 Monitoring and Controlling SSH

 Started: 05/03/2002 03:08:29
 Bytes in: 0 out: 537 (from child process: 17)

 Child process = "CATBERT_@FTA15" (pid 22C000C7) - an SSH1 session

 PTD Device = _FTA15:

 Started: 05/03/2002 03:08:29

Example 8-2 illustrates showing the sessions that originate from a specific TCP/IP address:

Example 8-2 Showing Sessions From a Specific Address

$ SSHCTRL SHOW /HOST=192.168.29.51

SSHD Master PID = 22C000B8

Debug level is set to 4

Process "SSHD 0004" (pid 22C000C6) - an SSH1 session
 User = CATBERT
 From system 192.168.29.51 port 1023
 Started: 05/03/2002 03:08:29
 Bytes in: 0 out: 537 (from child process: 17)

 Child process = "CATBERT_@FTA15" (pid 22C000C7) - an SSH1 session
 PTD Device = _FTA15:
 Started: 05/03/2002 03:08:29

8-5

Monitoring and Controlling SSH
8-6

Index
A
authentication agent connection 4-3, 5-3
authentication private keys 6-28
AuthorizationFile 6-8
AUTHORIZED_KEYS 4-17

B
BatchMode 6-8
BIND 4-11
break-in 5-3

C
cipher

3DES 4-2
ARCFOUR 4-2
BLOWFISH 4-2
DES 4-2
IDEA 4-2

ClearAllForwardings 6-8
ConnectionAttempts 6-8

E
empty passwords 4-12
encrypted data 6-17
ESCAPE_CHARACTER 6-7

H
home directory 4-14
host

public key 4-24
host key

creating 4-24
private part 4-24
public part 4-24, 5-15

host name patterns 4-10

I
IdentityFile 6-9
idle timeout 4-10
insecure network 6-2
intrusion detection 5-3

K
keepalive messages 4-11
keyword value pairs 4-3, 5-5

L
logical names
 MULTINET_SSH_ALLOW_PREEXPIRED_PW 4-27,

5-19
DECW$DISPLAY 6-6
MULTINET_SFTP_FALLBACK_TO_CBT 7-7
MULTINET_SFTP_TRANSLATE_VMS_FILE_TYPES

7-7
 MULTINET SSHADD 6-29
 MULTINET SSHAGENT 6-28
 MULTINET SSHKEYGEN 6-26
 MULTINET_SFTP_RETURN_ALQ 7-8
 MULTINET_SSH_SFTP_SERVER_DEBUG 7-8

M
mailbox 4-27, 5-19
MultiNet

Secure Shell (SSH) client 6-1
MultiNet SSH server 4-2, 5-2

N
netgroups 4-26, 5-16
nopwd 4-13

P
passphrase 6-29, 6-30
password authentication 4-12
password-based authentication 4-2
PasswordPromptLogin 6-9
port forwarding

definition 6-17
pseudoterminal 4-17, 5-13
public-key cryptography 6-3

R
random number generator 4-25
regenerate server key 4-11
Index-1

Index
RekeyIntervalSeconds 6-10
remote login program

host-based authentication 6-2
password authentication 6-4
public-key authentication 6-3

RemoteForward 6-10
rhosts authentication 4-2, 4-23
rights identifier patterns 4-9
RLOGIN 4-3, 5-2
RSA authentication 6-29
RSA authentication identity 6-30
RSA challenge-response authentication 4-2
RSA host authentication 4-2, 4-14
RSA key 4-2

bits 4-18
comment 4-18
exponent 4-18
modulus 4-18
options 4-18

RSA key file
Allowforwardingport 4-18
Allowforwardingto 4-19
command 4-19
Denyforwardingport 4-20
Denyforwardingto 4-20
from 4-21
idle-timeout 4-21
no-agent-forwarding 4-21
no-port-forwarding 4-21
no-X11-forwarding 4-21

RSA key file examples 4-21
RSA keys 4-17
RSA-based authentication 6-3
RSA-based host authentication 6-3
RSHELL 4-3, 5-2

S
SCP qualifiers

BATCH 7-3
CIPHER 7-3
COMPRESS 7-3
DEBUG 7-3
DIRECTORY 7-3
HELP 7-3
IDENTITY_FILE 7-3
NOPROGRESS 7-3
PORT 7-3
PRESERVE 7-3
QUIET 7-3
RECURSIVE 7-3
REMOVE 7-3
TRANSLATE_VMS 7-3
VERBOSE 7-3

VERSION 7-4
VMS 7-4

SCP2 6-28, 7-1
command syntax and qualifiers 7-2

SCP2 qualifier
/BATCH 7-4
/CIPHER 7-4
/COMPRESS 7-4
/DEBUG 7-4
/DIRECTORY 7-5
/HELP 7-5
/IDENTITY_FILE 7-5
/NOPROGRESS 7-5
/PORT 7-5
/PRESERVE 7-5
/QUIET 7-5
/RECURSIVE 7-5
/REMOVE 7-5
/TRANSLATE_VMS 7-6
/VERBOSE 7-6
/VERSION 7-6
/VMS 7-6

SCP-SERVER1 7-2
secure encrypted communications 4-1, 5-1
secure shell

configuration files 6-21
Secure Shell (SSH)

daemon (SSHD) 4-1, 5-1
restrictions 4-1, 5-1
security 4-2

secure shell client 6-2
spoofing

DNS 6-3
IP 6-3
routing 6-3

SSH
authentication agent 6-28
break-in and intrusion detection 6-5
changing configuration 4-17, 5-13
command options 6-7
connection and login 4-17, 5-13
daemon files 4-28, 5-20

SSHD.LOG 4-28
SSHD_MASTER.LOG 4-28

enabling 4-17, 5-13
expired passwords 6-4
host-based authentication example 6-12
logicals 4-26, 5-14, 5-18

SSH_DIR 4-26, 5-18
SSH_EXE 4-26, 5-18
SSH_LOG 4-26, 5-18
SSH_MAX_SESSIONS 4-27, 5-18
SSH_TERM_MBX 4-27, 5-19

public-key authentication example 6-14
server system authentication 6-2
session termination 6-5
Index-2

Index
starting the server 4-16, 5-11
X11 forwarding 6-6

SSH command
ALLOW_REMOTE_CONNECT 6-7
CIPHER 6-7
COMPRESSION 6-7
DEBUG 6-7
ESCAPE_CHARACTER 6-7
LOCAL_FORWARD 6-7
LOG_FILE 6-7
NO_AGENT_FORWARDING 6-8
OPTION 6-7
PORT 6-7
REMOTE_FORWARD 6-7
VERSION 6-8

SSH files
CONFIG. 6-21
HOSTS.EQUIV 6-24
IDENTITY 6-21
IDENTITY. 6-21
IDENTITY.PUB 6-22
KNOWN_HOSTS 6-22
RANDOM_SEED. 6-23
RHOSTS 6-23
SHOSTS 6-24

SSH2_CONFIG 6-24
SSH_KNOWN_HOSTS file

AUTHORIZED_KEYS 4-25
SHOSTS 4-25

RHOSTS 4-26
SSH2

break-in 5-3
client configuration 6-6
client keyword

AllowedAuthentication 6-8
AuthenticationNotify 6-8
Ciphers 6-8
Compression 6-8
DefaultDomain 6-8
EscapeChar 6-9
ForwardAgent 6-9
ForwardX11 6-9
GatewayPorts 6-9
Host 6-9
KeepAlive 6-9
LocalForward 6-9
Macs 6-9
NoDelay 6-9
NumberOfPasswordPrompts 6-9
PasswordPrompt 6-9
Port 6-9
QuietMode 6-9
RandomSeedFile 6-9

intrusion detection 5-3
SSHADD 6-28, 6-29
SSHADD option

LIST 6-29
PURGE 6-29

SSHAGENT 6-28
authentication agent 6-29
authentication private keys 6-28

SSHD 4-2, 4-17, 5-2, 5-13
SSHD configuration file keyword

AllowForwardingPort 4-4
AllowForwardingTo 4-5
AllowGroups 4-6
AllowHosts 4-6
AllowSHosts 4-7
AllowTcpForwarding 4-7
AllowUsers 4-8
DenyForwardingPort 4-8
DenyForwardingTo 4-9
DenyGroups 4-9
DenyHost 4-9
DenySHosts 4-10
DenyUsers 4-10
HostKey 4-10
IdleTimeout 4-10
IgnoreRhosts 4-11
KeepAlive 4-11
KeyRegenerationInterval 4-11
ListenAddressee 4-11
LoginGraceTime 4-12
PasswordAuthentication 4-12
PermitEmptyPasswords 4-12
PermitRootLogin 4-13
QuietMode 4-13
RandomSeed 4-13
RhostsAuthentication 4-14
RhostsRSAAuthentication 4-14
RSAAuthentication 4-14
SilentDeny 4-14
StrictModes 4-14
SyslogFacility 4-15
X11DisplayOffset 4-15

SSHD_MASTER 4-2, 4-17, 5-2, 5-13
SSHKEYGEN 6-25, 6-29

files
IDENTITY 6-30
IDENTITY.PUB 6-30
RANDOM_SEED 6-30

stolen key 4-21

T
TCP/IP connections 4-3, 5-3
TELNET 5-2
TELNET sessions 6-18
tunneling 6-17
Index-3

Index
U
unsecure connections 6-17
untrusted hosts 6-2

X
X11 connections 4-3, 5-3
Xauthority data 6-6
Index-4

Reader’s Comments
SSH for OpenVMS Version 1.0 Administration and User’s Guide

Your comments and suggestions will help us to improve the quality of our future documentation. Please note that this
form is for comments on documentation only.

I rate this guide’s: Excellent Good Fair Poor
Accuracy o o o o
Completeness (enough information) o o o o
Clarity (easy to understand) o o o o
Organization (structure of subject matter) o o o o
Figures (useful) o o o o
Index (ability to find topic) o o o o
Ease of use o o o o

1. I would like to see more/less:___

2. Does this guide provide the information you need to perform daily tasks?______________________________

3. What I like best about this guide:__

4. What I like least about this guide:__

My additional comments or suggestions for improving this
guide:__
__

I found the following errors in this guide:

Page Description
_______ ___

_______ ___

Please indicate the type of user/reader that you most nearly represent:

System Manager o Educator/Trainer o
Experienced Programmer o Sales o
Novice Programmer o Scientist/Engineer o
Computer Operator o Software Support o
Administrative Support o Other (please specify) o ___________________________

Name:__ Dept.__________________________
Company:___ Date__________________________
Mailing Address:__

After filling out this form, FAX or mail it to:
Process Software, 959 Concord Street, Framingham, MA 01701-4682

Attention: Technical Publications Group FAX 508-879-0042 e-mail:techpubs@process.com

	Preface
	Introducing This Guide
	What You Need to Know Beforehand
	How This Guide Is Organized
	Online Help
	Accessing the SSH for OpenVMS Public Mailing List
	Obtaining Customer Support
	License Information
	Maintenance Services
	Reader's Comments Page
	Documentation Set
	Conventions Used

	Chapter 1
	Before You Begin
	Introduction
	Steps to Get SSH Up and Running
	Prepare for Installation
	Hardware Requirements
	Software Requirements
	Disk Space and Global Pages

	General Requirements
	Where to Install SSH for OpenVMS

	Release Notes and Online Documentation

	Chapter 2
	Installing SSH for OpenVMS
	Introduction
	Load the Software
	Start VMSINSTAL
	Sample Installation
	Installing SSH for OpenVMS on a Common VMScluster System Disk
	Installing SSH for OpenVMS on Mixed Platform Clusters

	Chapter 3
	Configuring SSH for OpenVMS
	Introduction
	The SSH Configuration Utility

	Chapter 4
	Configuring the Secure Shell (SSH) V1 Server
	SSH1 and SSH2 Differences
	Restrictions:
	Understanding the Secure Shell Server
	Servers and Clients
	Security
	Options
	Configuration File

	Starting the SSH Server for the First Time
	Changing SSH Configuration File After Enabling SSH
	Connection and Login Process
	AUTHORIZED_KEYS File Format
	RSA Key File Examples

	SSH_KNOWN_HOSTS File Format
	Example
	FILES

	SSH Logicals
	SSH daemon Files

	Chapter 5
	Configuring the Secure Shell (SSH) V2 Server
	SSH1 and SSH2 Differences
	Restrictions:
	Understanding the SSH for OpenVMS SSH Server
	Servers and Clients
	Break-In and Intrusion Detection

	Configuring SSHD Master
	SSH2 Configuration File

	Starting the SSH Server for the First Time
	Changing SSH2 Configuration File After Enabling SSH2
	Connection and Login Process
	SSH Files
	SSH2 AUTHORIZATION File Format

	SSH2 Logicals
	SSH daemon Files

	Chapter 6
	Accessing Remote Systems with the Secure Shell (SSH) Utilities
	SSH Protocol Support
	Secure Shell Client (remote login program)
	Initial Server System Authentication
	Hostbased Authentication
	Publickey Authentication
	Password authentication
	Break-in and Intrusion Detection
	Session Termination
	X11 Forwarding

	Configuring the SSH Client
	Notes Regarding SSH2_CONFIG
	SSH Client/Server Authentication Configuration Examples
	Hostbased Authentication Example
	Publickey Authentication Example
	SSH1 Example

	Copying SSH2 Key Files

	Port Forwarding
	Other Files

	SSHKEYGEN
	SSHAgent (authentication agent)
	DESCRIPTION
	FILES

	SSHADD
	DESCRIPTION
	OPTIONS
	FILES

	Chapter 7
	Secure File Transfer
	SCP-SERVER1
	SCP2
	Usage
	Qualifiers

	File Specifications
	FTP over SSH

	Chapter 8
	Monitoring and Controlling SSH
	Controlling SSH Server Functions
	The SSHCTRL Utility
	Starting the SSHD Master Process
	Shutting down the SSHD Master Process
	Restarting the SSHD Master Process
	Changing the Server Debug Level
	Displaying SSH Server Utilization

